freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

包頭市初中數(shù)學試卷易錯易錯壓軸勾股定理選擇題題分類匯編(及答案)(2)(編輯修改稿)

2025-04-01 23:10 本頁面
 

【文章內容簡介】 ,∴,∴BC=3, ∴陰影部分的面積=以AB為直徑的半圓面積+以BC為直徑的半圓面積+以AC為直徑的半圓面積=.【點睛】.6.C解析:C【分析】根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.【詳解】∵∠BCA=90°,AC=6,BC=8,∴,∵D是AB的中點,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,∴BD=DE,作DH⊥BE于H,EG⊥CD于G,∴∠DHE=∠EGD=90,∠EDH=∠BDE=(1802∠EDC)=90∠EDC,∴∠DEB= 90∠EDH=90(90∠EDC)=∠EDC,∵DE=DE,∴△DHE≌△EGD,∴DH=EG,EH=DG,設DG=x,則CG=5x,∵=,∴,∴,∴,∴BE=2EH=,故選:C.【點睛】此題考查翻折的性質,勾股定理,等腰三角形的性質,將求BE轉換為求其一半的長度的想法是關鍵,由此作垂線,證明△DHE≌△EGD,由此求出BE的長度.7.B解析:B【分析】過點O作OE⊥BC于E,OF⊥AC于F,由角平分線的性質得到OD=OE=OF,根據(jù)勾股定理求出BC的長,易得四邊形ADFO為正方形,根據(jù)線段間的轉化即可得出結果.【詳解】解:過點O作OE⊥BC于E,OF⊥AC于F, ∵BO,CO分別為∠ABC,∠ACB的平分線,所以OD=OE=OF,又BO=BO,∴△BDO≌△BEO,∴BE=BD.同理可得,CE=CF.又四邊形ADOE為矩形,∴四邊形ADOE為正方形.∴AD=AF.∵在Rt△ABC中,AB=6,AC=8,∴BC=10.∴AD+BD=6①,AF+FC=8②,BE+CE=BD+CF=10③,①+②得,AD+BD+AF+FC=14,即2AD+10=14,∴AD=2.故選:B.【點睛】此題考查了角平分線的定義與性質,以及全等三角形的判定與性質,屬于中考??碱}型.8.B解析:B【分析】設OA=a,OB=b,OC=c,OD=d,根據(jù)勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可證得a2+d2=18,由此得到答案.【詳解】設OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,則a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣162=18,∴AD=,故選:B.【點睛】此題考查勾股定理的運用,根據(jù)題中的已知條件得到直角三角形,再利用勾股定理求出未知的邊長,解題中注意直角邊與斜邊.9.C解析:C【分析】將容器側面展開,建立A關于上邊沿的對稱點A’,根據(jù)兩點之間線段最短可知A’B的長度為最短路徑15,構造直角三角形,依據(jù)勾股定理可以求出底面周長的一半,乘以2即為所求.【詳解】解:如圖,將容器側面展開,作A關于EF的對稱點,連接,則即為最短距離,根據(jù)題意:,.所以底面圓的周長為92=18cm.故選:C.【點睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.10.A解析:A【分析】分三種情況討論:把左側面展開到水平面上,連結AB;把右側面展開到正面上,連結AB,;把向上的面展開到正面上,連結AB;然后利用勾股定理分別計算各情況下的AB,再進行大小比較.【詳解】把左側面展開到水平面上,連結AB,如圖1把右側面展開到正面上,連結AB,如圖2把向上的面展開到正面上,連結AB,如圖3∵∴ ∴需要爬行的最短距離為25cm故選:A.【點睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構造直角三角形解決問題.11.A解析:A【分析】先判斷△DBE是等腰直角三角形,根據(jù)勾股定理可推導得出BD=BE,故①正確;根據(jù)∠BHE和∠C都是∠HBE的余角,可得∠BHE=∠C,再由∠A=∠C,可得②正確;證明△BEH≌△DEC,從而可得BH=CD,再由AB=CD,可得③正確;利用已知條件不能得到④,據(jù)此即可得到選項.【詳解】解:∵∠DBC=45176。,DE⊥BC于E,∴在Rt△DBE中,BE2+DE2=BD2,BE=DE,∴BD=BE,故①正確;∵DE⊥BC,BF⊥DC,∴∠BHE和∠C都是∠HBE的余角,∴∠BHE=∠C,又∵在?ABCD中,∠A=∠C,∴∠A=∠BHE,故②正確;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四邊形ABCD為平行四邊形,∴AB=CD,∴AB=BH,故③正確;利用已知條件不能得到△BCF≌△DCE,故④錯誤,故選A.【點睛】本題考查了平行四邊形的性質、等腰直角三角形的判定與性質、勾股定理、全等三角形的判定與性質等,熟練掌握相關性質與定理是解題的關鍵.12.B解析:B【分析】根據(jù)30176。直角三角形的性質,求出∠ABC的度數(shù),然后根據(jù)角平分線的性質求出∠CBD=30176。,再根據(jù)30176。角所對的直角三角形性質,30176。角所對的直角邊等于斜邊的一半,求解即可.【詳解】
點擊復制文檔內容
醫(yī)療健康相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1