freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

初中數(shù)學試卷易錯易錯壓軸勾股定理選擇題題分類匯編(附答案)50(5)(編輯修改稿)

2025-04-01 22:48 本頁面
 

【文章內容簡介】 +∠DBC=45176。.本結論正確.④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2.∵△ADE為等腰直角三角形,∴DE=AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.而BD2≠2AB2,本結論錯誤.綜上所述,正確的個數(shù)為3個.故選C.5.D解析:D【解析】【分析】本題就是把圓柱的側面展開成矩形,“化曲面為平面”,用勾股定理解決..要求彩帶的長,需將圓柱的側面展開,進而根據(jù)“兩點之間線段最短”得出結果,在求線段長時,借助于勾股定理.【詳解】如圖,由圖可知,彩帶從易拉罐底端的A處繞易拉罐4圈后到達頂端的B處,將易拉罐表面切開展開呈長方形,則螺旋線長為四個長方形并排后的長方形的對角線長,設彩帶最短長度為xcm,∵∵易拉罐底面周長是12cm,高是20cm,∴x2=(124)2+202∴x2=(124)2+202,所以彩帶最短是52cm.故選D.【點睛】本題考查了平面展開??最短路徑問題,圓柱的側面展開圖是一個矩形,此矩形的長等于圓柱底面周長,高等于圓柱的高,6.C解析:C【解析】【分析】根據(jù)三角形的面積判斷出PE+PF的長等于AC的長,這樣就變成了求AC的長;在Rt△ACD和Rt△ABC中,利用勾股定理表示出AC,解方程就可以得到AD的長,再利用勾股定理就可以求出AC的長,也就是PE+PF的長.【詳解】∵△DCB為等腰三角形,PE⊥AB,PF⊥CD,AC⊥BD,∴S△BCD=BD?PE+CD?PF=BD?AC,∴PE+PF=AC,設AD=x,BD=CD=3x,AB=4x,∵AC2=CD2AD2=(3x)2x2=8x2,∵AC2=BC2AB2=()2(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故選C【點睛】本題考查勾股定理、等腰三角形的性質等知識,解題的關鍵是學會利用面積法證明線段之間的關系,靈活運用勾股定理解決問題,屬于中考??碱}型.7.A解析:A【分析】連續(xù)使用勾股定理求直角邊和斜邊,然后再求面積,觀察發(fā)現(xiàn)規(guī)律,即可正確作答.【詳解】解:∵△ABC是邊長為1的等腰直角三角形 ,∴ ∴第n個等腰直角三角形的面積是 ,故答案為A.【點睛】本題的難點是運用勾股定理求直角三角形的直角邊,同時觀察、發(fā)現(xiàn)也是解答本題的關鍵.8.C解析:C【分析】依據(jù)每列數(shù)的規(guī)律,即可得到,進而得出的值.【詳解】解:由題可得:……當 故選C【點睛】本題為勾股數(shù)與數(shù)列規(guī)律綜合題;觀察數(shù)列,找出規(guī)律是解答本題的關鍵.9.C解析:C【分析】根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.【詳解】∵∠BCA=90°,AC=6,BC=8,∴,∵D是AB的中點,∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,∴BD=DE,作DH⊥BE于H,EG⊥CD于G,∴∠DHE=∠EGD=90,∠EDH=∠BDE=(1802∠EDC)=90∠EDC,∴∠DEB= 90∠EDH=90(90∠EDC)=∠EDC,∵DE=DE,∴△DHE≌△EGD,∴DH=EG,EH=DG,設DG=x,則CG=5x,∵=,∴,∴,∴,∴BE=2EH=,故選:C.【點睛】此題考查翻折的性質,勾股定理,等腰三角形的性質,將求BE轉換為求其一半的長度的想法是關鍵,由此作垂線,證明△DHE≌△EGD,由此求出BE的長度.10.C解析:C【分析】根據(jù)勾股定理即可得到正方形A的面積加上B的面積加上C的面積和D的面積是E的面積.即可求解.【詳解】四個正方形的面積的和是正方形E的面積:即;故答案為C.【點睛】理解正方形A,B,C,D的面積的和是E的面積是解決本題的關鍵.11.D解析:D【分析】根據(jù)折疊的性質可得AD=A39。D,AE=A39。E,易得陰影部分圖形的周長為=AB+BC+AC,則可求得答案.【詳解】解:因為等邊三角形ABC的邊長為1cm,所以AB=BC=AC=1cm,因為△ADE沿直線DE折疊,點A落在點A39。處,所以AD=A39。D,AE=A39。E,所以陰影部分圖形的周長=BD+A39。D+BC+A39。E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故選:D.【點睛】此題考查了折疊的性質與等邊三角形的性質.此題難度適中,注意掌握數(shù)形結合思想與轉化思想的應用以及折疊前后圖形的對應關系.12.C解析:C【分析】將容器側面展開,建立A關于上邊沿的對稱點A’,根據(jù)兩點之間線段最短可知A’B的長度為最短路徑15,構造直角三角形,依據(jù)勾股定理可以求出底面周長的一半,乘以2即為所求.【詳解】解:如圖,將容器側面展開,作A關于EF的對稱點,連接,則即為最短距離,
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1