freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

長沙市初中數(shù)學(xué)試卷分類匯編易錯易錯壓軸勾股定理選擇題(附答案)(5)(編輯修改稿)

2025-04-05 04:09 本頁面
 

【文章內(nèi)容簡介】 根據(jù)勾股定理得, ,所以,這個菱形的周長=45=20cm.故選:D.【點睛】本題考查了菱形的性質(zhì),勾股定理,主要利用了菱形的對角線互相垂直平分,需熟記.6.D解析:D【解析】【分析】利用勾股定理和正方形的面積公式,對公式進(jìn)行合適的變形即可判斷各個選項是否爭取.【詳解】A中,根據(jù)勾股定理等于大正方形邊長的平方,它就是正方形的面積,故正確;B中,根據(jù)小正方形的邊長是2它等于三角形較長的直角邊減較短的直角邊即可得到,正確;C中,根據(jù)四個直角三角形的面積和加上小正方形的面積即可得到,正確;D中,根據(jù)A可得,C可得,結(jié)合完全平方公式可以求得,錯誤.故選D.【點睛】、B、C選項的等式中需理解等式的各個部分表示的幾何意義,對于D選項是由A、C選項聯(lián)立得出的.7.C解析:C【分析】依據(jù)每列數(shù)的規(guī)律,即可得到,進(jìn)而得出的值.【詳解】解:由題可得:……當(dāng) 故選C【點睛】本題為勾股數(shù)與數(shù)列規(guī)律綜合題;觀察數(shù)列,找出規(guī)律是解答本題的關(guān)鍵.8.B解析:B【分析】首先由,得知動點P在與AB平行且與AB的距離為3的直線上,作點A關(guān)于直線的對稱點E,連接AE、BE,則BE的長就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵, 設(shè)點P到CD的距離為h,則點P到AB的距離為(4h),則,解得:h=1,∴點P到CD的距離1,到AB的距離為3,∴如下圖所示,動點P在與AB平行且與AB的距離為3的直線上,作點A關(guān)于直線的對稱點E,連接AE、BE,且兩點之間線段最短,∴PA+PB的最小值即為BE的長度,AE=6,AB=3,∠BAE=90176。,根據(jù)勾股定理:,故選:B.【點睛】本題考查了軸對稱—最短路線問題(兩點之間線段最短),勾股定理,得出動點P所在的位置是解題的關(guān)鍵.9.A解析:A【分析】分三種情況討論:把左側(cè)面展開到水平面上,連結(jié)AB;把右側(cè)面展開到正面上,連結(jié)AB,;把向上的面展開到正面上,連結(jié)AB;然后利用勾股定理分別計算各情況下的AB,再進(jìn)行大小比較.【詳解】把左側(cè)面展開到水平面上,連結(jié)AB,如圖1把右側(cè)面展開到正面上,連結(jié)AB,如圖2把向上的面展開到正面上,連結(jié)AB,如圖3∵∴ ∴需要爬行的最短距離為25cm故選:A.【點睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構(gòu)造直角三角形解決問題.10.B解析:B【分析】要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答.【詳解】解:根據(jù)題意,如圖所示,最短路徑有以下三種情況:(1)沿,,剪開,得圖;(2)沿,,,剪開,得圖;(3)沿,,,剪開,得圖;綜上所述,最短路徑應(yīng)為(1)所示,所以,即.故選:B.【點睛】此題考查最短路徑問題,將長方體從不同角度展開,是解決此類問題的關(guān)鍵,注意不要漏解.11.A解析:A【分析】根據(jù)各個圖象,利用面積的不同表示方法,列式證明結(jié)論,找出不能證明的那個選項.【詳解】解:A選項不能證明勾股定理;B選項,通過大正方形面積的不同表示方法,可以列式,可得;C選項,通過梯形的面積的不同表示方法,可以列式,可得;D選項,通過這個不規(guī)則圖象的面積的不同表示方法,可以列式,可得.故選:A.【點睛】本題考查勾股定理的證明,解題的關(guān)鍵是掌握勾股定理的證明方法.12.A解析:A【解析】試題解析:如圖,過D作AB垂線交于K,∵BD平分∠ABC,∴∠CBD=∠ABD∵∠C=∠DKB=90176。,∴CD=KD,在△BCD和△BKD中,∴△BCD≌△BKD,∴BC=BK=3∵E為AB中點∴BE=AE=,EK=,∴AK=AEEK=2,設(shè)DK=DC=x,AD=4x,∴AD2=AK2+DK2即(4x)2=22+x2解得:x=∴在Rt△DEK中,DE=.故選A.13.D解析:D【分析】將容器側(cè)面展開,建立A關(guān)于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為最短路徑,由勾股定理求出A′D即圓柱底面周長的一半,由此即可解題.【詳解】解:如圖,將圓柱展開,為上底面圓周長的一半,作關(guān)于的對稱點,連接交于,則螞蟻吃到蜂蜜需爬行的最短路徑為的長,即,延長,過作于,,中,由勾股定理得:,該圓柱底面周長為:,故選D.【點睛】本題考查了平面展開最短路徑問題,將圖形展開,利用軸對稱的性
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1