freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

勾股定理選擇題(含答案)(3)(編輯修改稿)

2025-04-01 23:09 本頁面
 

【文章內(nèi)容簡介】 聯(lián)立得出的.6.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進(jìn)而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。,BC=,BC2+AB2=AC2,AD=AC,∴AB2+=,∴AB=177。2,∵AB>0,∴AB=2米,∴小巷的寬度為:+2=(米).故選:D.【點睛】本題考查的是勾股定理的應(yīng)用,在應(yīng)用勾股定理解決實際問題時勾股定理與方程的結(jié)合是解決實際問題常用的方法,關(guān)鍵是從題中抽象出勾股定理這一數(shù)學(xué)模型,畫出準(zhǔn)確的示意圖.7.C解析:C【分析】存在2種情況,△ABC是銳角三角形和鈍角三角形時,高AD分別在△ABC的內(nèi)部和外部【詳解】情況一:如下圖,△ABC是銳角三角形∵AD是高,∴AD⊥BC∵AB=15,AD=12∴在Rt△ABD中,BD=9∵AC=13,AD=12∴在Rt△ACD中,DC=5∴△ABC的周長為:15+12+9+5=42情況二:如下圖,△ABC是鈍角三角形在Rt△ADC中,AD=12,AC=13,∴DC=5在Rt△ABD中,AD=12,AB=15,∴DB=9∴BC=4∴△ABC的周長為:15+13+4=32故選:C【點睛】本題考查勾股定理,解題關(guān)鍵是多解,注意當(dāng)幾何題型題干未提供圖形時,往往存在多解情況.8.D解析:D【詳解】解:(1)當(dāng)點P在x軸正半軸上,①以O(shè)A為腰時,∵A的坐標(biāo)是(2,2),∴∠AOP=45176。,OA=,∴P的坐標(biāo)是(4,0)或(,0);②以O(shè)A為底邊時,∵點A的坐標(biāo)是(2,2),∴當(dāng)點P的坐標(biāo)為:(2,0)時,OP=AP;(2)當(dāng)點P在x軸負(fù)半軸上,③以O(shè)A為腰時,∵A的坐標(biāo)是(2,2),∴OA= ,∴OA=AP= ∴P的坐標(biāo)是(,0).故選D.9.B解析:B【分析】在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,分三種情況分析:;根據(jù)等腰三角形的性質(zhì)分別對三種情況逐個分析,即可得到答案.【詳解】根據(jù)題意,使得成為等腰三角形,分、三種情況分析:當(dāng)時,點P位置再分兩種情況分析:第1種:點P在點O右側(cè),于點O∴ 設(shè)∴∵∴ ∴ ∴∴,不符合題意;第2種:點P在點O左側(cè),于點O設(shè)∴∴ ∴∴,點P存在,即;當(dāng)時,點P存在;當(dāng)時,即點P和點C重合,不符合題意;∴符合題意的點P共有:2個故選:B.【點睛】本題考查了等腰三角形、勾股定理、一元一次方程的知識;解題的關(guān)鍵是熟練掌握等腰三角形、勾股定理、一元一次方程的性質(zhì),從而完成求解.10.C解析:C【解析】試題解析:如圖,∵大正方形的面積是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面積是(251)247。4=6,又∵直角三角形的面積是ab=6,∴ab=12.故選C.11.B解析:B【分析】由折疊的性質(zhì)得出AD=BD,設(shè)BD=x,則CD=8x,在Rt△ACD中根據(jù)勾股定理列方程即可得出答案.【詳解】解:∵將△ABC折疊,使點B與點A重合,折痕為DE,∴AD=BD,設(shè)BD=x,則CD=8x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8x)2=x2,解得x= ∴BD=.故選:B.【點睛】本題考查了翻折變換的性質(zhì)、勾股定理等知識,熟練掌握方程的思想方法是解題的關(guān)鍵.12.B解析:B【分析】作AD⊥BC,則D為BC的中點,即BD=DC=2,根據(jù)勾股定理可以求得AD,則根據(jù)S=BCAD可以求得△ABC的面積.【詳解】解:作AD⊥BC,則D為BC的中點,則BD=DC=2,∵AB=,且AD==4,∴△ABC的面積為S=BCAD=44=8,故選:B.【點睛】本題考查了勾股定理的運用,三角形面積的計算,本題中正確的運用勾股定理求AD是解題的關(guān)鍵.13.C解析:C【分析】本題可根據(jù)兩個非負(fù)數(shù)相加和為0,則這兩個非負(fù)數(shù)的值均為0解出x、y的值,然后運用勾股定理求出斜邊的長.斜邊長的平方即為正方形的面積.【詳解】依題意得:,∴,斜邊長,所以正方形的面積.故選C.考點:本題綜合考查了勾股定理與非負(fù)數(shù)的性質(zhì)點評:解這類題的關(guān)鍵是利用直角三角形,用勾股定理來尋求未知系數(shù)的等量關(guān)系.14.A解析:A【分析】求出兩小邊的平方和、最長邊的平方,看看是否相等即可.【詳解】A、12+()2=()2∴以為邊組成的三角形是直角三角形,故本選項正確。B、22+3242∴以4為邊組成的
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1