freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

南通市勾股定理選擇題(編輯修改稿)

2025-04-01 23:36 本頁面
 

【文章內容簡介】 而證明△BOE是直角三角形,然后設AB=x,則OB=3+x,根據(jù)周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C, 此時△ABC周長最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長的最小值是6,∴AB+BE=6,∵∠MON=45176。,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45176。,由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45176。,∴∠AOE=90176。,∴△BOE是直角三角形,設AB=x,則OB=3+x,BE=6-x,在Rt△OBE中,解得:x=1,∴AB=1.故選D.【點睛】本題考查了利用軸對稱求最值,等腰直角三角形的判定與性質,勾股定理,熟練掌握作圖技巧,正確利用勾股定理建立出方程是解題的關鍵.7.D解析:D【分析】利用角平分定理得到DE=AD,根據(jù)三角形內角和得到∠BDE=∠BDA,再利用角平分線定理得到BE=AB=AC,根據(jù)的周長為6求出AB=6,再根據(jù)勾股定理求出,即可求得的面積.【詳解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周長為6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,∴的面積=,故選:D.【點睛】此題考查角平分線定理的運用,勾股定理求邊長,在利用角平分線定理時必須是兩個垂直一個平分同時運用,得到到角兩邊的距離相等的結論.8.B解析:B【解析】【分析】根據(jù)完全平方公式利用a+b=10,ab=18求出,即可得到三角形的形狀.【詳解】∵a+b=10,ab=18,∴=(a+b)22ab=10036=64,∵,c=8,∴=64,∴=,∴該三角形是直角三角形,故選:B.【點睛】此題考查勾股定理的逆定理,完全平方公式,能夠利用完全平方公式由已知條件求出是解題的關鍵.9.D解析:D【分析】先根據(jù)勾股定理求出梯子的長,進而根據(jù)勾股定理可得出小巷的寬度.【詳解】解:如圖,由題意可得:AD2=+=,在Rt△ABC中,∵∠ABC=90176。,BC=,BC2+AB2=AC2,AD=AC,∴AB2+=,∴AB=177。2,∵AB>0,∴AB=2米,∴小巷的寬度為:+2=(米).故選:D.【點睛】本題考查的是勾股定理的應用,在應用勾股定理解決實際問題時勾股定理與方程的結合是解決實際問題常用的方法,關鍵是從題中抽象出勾股定理這一數(shù)學模型,畫出準確的示意圖.10.D解析:D【分析】先根據(jù)等腰三角形的性質得出是線段垂直平分線,再根據(jù)垂直平分線的性質、兩點之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質得出BE的最小值即可得.【詳解】如圖,作,交AC于點E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點之間線段最短得:當點共線時,最小,最小值為點都是動點隨點的運動而變化由垂線段最短得:當時,取得最小值在中,即的最小值為故選:D.【點睛】本題考查了等腰三角形的性質、垂直平分線的性質、兩點之間線段最短等知識點,利用兩點之間線段最短和垂線段最短確認的最小值是解題關鍵.11.B解析:B【分析】首先由,得知動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,則BE的長就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵, 設點P到CD的距離為h,則點P到AB的距離為(4h),則,解得:h=1,∴點P到CD的距離1,到AB的距離為3,∴如下圖所示,動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,且兩點之間線段最短,∴PA+PB的最小值即為BE的長度,AE=6,AB=3,∠BAE=90176。,根據(jù)勾股定理:,故選:B.【點睛】本題考查了軸對稱—最短路線問題(兩點之間線段最短),勾股定理,得出動點P所在的位置是解題的關鍵.12.B解析:B【分析】在BC邊上取一點P(點P不與點B、C重合),使得成為等腰三角形,分三種情況分析:;根據(jù)等腰三角形的性質分別對三種情況逐個分析,即可得到答案.【詳解】根據(jù)題意,使得成為等腰三角形,分、三種情況分析:當時,點P位置再分兩種情況分析:第1種:點P在點O右側,于點O∴ 設∴∵∴ ∴ ∴∴,不符合題意;第2種:點P在點
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1