freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

勾股定理選擇題(附答案)50(4)(編輯修改稿)

2025-04-01 23:31 本頁面
 

【文章內容簡介】 ⊥CD,AC⊥BD,∴S△BCD=BD?PE+CD?PF=BD?AC,∴PE+PF=AC,設AD=x,BD=CD=3x,AB=4x,∵AC2=CD2AD2=(3x)2x2=8x2,∵AC2=BC2AB2=()2(4x)2,∴x=2,∴AC=4,∴PE+PF=4.故選C【點睛】本題考查勾股定理、等腰三角形的性質等知識,解題的關鍵是學會利用面積法證明線段之間的關系,靈活運用勾股定理解決問題,屬于中考??碱}型.7.C解析:C【解析】【分析】根據(jù)勾股定理求解即可,注意要確認a是直角邊還是斜邊.【詳解】解:當a是直角三角形的斜邊時, ;當a為直角三角形的直角邊時,.故選C.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.8.D解析:D【分析】要求最短路徑,首先要把圓柱的側面展開,利用兩點之間線段最短,然后利用勾股定理即可求解.【詳解】解:把圓柱側面展開,展開圖如圖所示,點,的最短距離為線段的長.∵已知圓柱的底面直徑,∴,在中, ,∴,∴從點爬到點,然后再沿另一面爬回點,則小蟲爬行的最短路程的平方為.故選D.【點睛】本題考查了平面展開最短路徑問題,解題的關鍵是會將圓柱的側面展開,并利用勾股定理解答.9.B解析:B【分析】由直角三角形的勾股定理以及正方形的面積公式不難發(fā)現(xiàn):a的面積等于1號的面積加上2號的面積,b的面積等于2號的面積加上3號的面積,c的面積等于3號的面積加上4號的面積,據(jù)此可以求出三個的面積之和.【詳解】利用勾股定理可得: ,∴ 故選B【點睛】本題主要考查勾股定理的應用,熟練掌握相關性質定理是解題關鍵.10.D解析:D【分析】利用角平分定理得到DE=AD,根據(jù)三角形內角和得到∠BDE=∠BDA,再利用角平分線定理得到BE=AB=AC,根據(jù)的周長為6求出AB=6,再根據(jù)勾股定理求出,即可求得的面積.【詳解】∵,∴AB⊥AD,∵,平分,∴DE=AD,∠BED=,∴∠BDE=∠BDA,∴BE=AB=AC,∵的周長為6,∴DE+CD+CE=AC+CE=BC=6,∵∴,∴,∴的面積=,故選:D.【點睛】此題考查角平分線定理的運用,勾股定理求邊長,在利用角平分線定理時必須是兩個垂直一個平分同時運用,得到到角兩邊的距離相等的結論.11.D解析:D【分析】根據(jù)折疊的性質可得AD=A39。D,AE=A39。E,易得陰影部分圖形的周長為=AB+BC+AC,則可求得答案.【詳解】解:因為等邊三角形ABC的邊長為1cm,所以AB=BC=AC=1cm,因為△ADE沿直線DE折疊,點A落在點A39。處,所以AD=A39。D,AE=A39。E,所以陰影部分圖形的周長=BD+A39。D+BC+A39。E+EC=BD+AD+BC+AE+EC=AB+BC+AC=1+1+1=3(cm).故選:D.【點睛】此題考查了折疊的性質與等邊三角形的性質.此題難度適中,注意掌握數(shù)形結合思想與轉化思想的應用以及折疊前后圖形的對應關系.12.C解析:C【分析】觀察圖形可知,小正方形的面積=大正方形的面積4個直角三角形的面積,利用已知 =21,大正方形的面積為13,可以得以直角三角形的面積,進而求出答案?!驹斀狻坑捎诖笳叫蔚倪呴L為,又大正方形的面積為13,即,而小正方形的面積表達式為,而小正方形的面積表達式為 故本題正確答案為C.【點睛】本題主要考查直角三角形,用到勾股定理的證明,正確計算是解題的關鍵.13.B解析:B【分析】首先由,得知動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,則BE的長就是所求的最短距離,然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.【詳解】解:∵, 設點P到CD的距離為h,則點P到AB的距離為(4h),則,解得:h=1,∴點P到CD的距離1,到AB的距離為3,∴如下圖所示,動點P在與AB平行且與AB的距離為3的直線上,作點A關于直線的對稱點E,連接AE、BE,且兩點之間線段最短,∴PA+PB的最小值即為BE的長度,AE=6,AB=3,∠BAE=90176。,根據(jù)勾股定理:,故選:B.【點睛】本題考查了軸對稱—最短路線問題(兩點之間線段最短),勾股定理,得出動點P所在的位置是解題的關鍵.14.A解析:A【分析】根據(jù)AC=13,AD=12,CD=5,可判斷出△ADC是直角三角形,在Rt△ADB中求出BD,繼而可得出BC的長度.【詳解】∵AC=13,AD=12,CD=5,∴,∴△ABD是直角三角形,AD⊥BC,由于點D在直線BC上,分兩種情況討論:當點D在
點擊復制文檔內容
外語相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1