freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

中考數學-易錯易錯壓軸勾股定理選擇題專題練習(含答案)100(1)(編輯修改稿)

2025-04-01 22:51 本頁面
 

【文章內容簡介】 延長線上取一點B’,使得BC=B’C,連接AB’,易證△AB’D≌△ABE,可得∠ABE=∠B’=60176。,因此點E的軌跡是一條直線,過點C作CH⊥BE,則點H即為使得BE最小時的E點的位置,然后根據直角三角形的性質和勾股定理即可得出答案.【詳解】解:在CB的反向延長線上取一點B’,使得BC=B’C,連接AB’,∵∠ACB=90176。,∠ABC=60176。,∴△AB’B是等邊三角形,∴∠B’=∠B’AB=60176。,AB’=AB,∵△ADE是等邊三角形,∴∠DAE=60176。,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60176。,∴點E在直線BE上運動,過點C作CH⊥BE于點H,則點H即為使得BE最小時的E點的位置,∠CBH=180176?!螦BC∠ABE=60176。,∴∠BCH=30176。,∴BH=BC=,∴CH==.即BE的最小值是.故選C.【點睛】本題是一道動點問題,綜合考查了全等三角形的判定和性質,等邊三角形的判定和性質,直角三角形的性質和勾股定理等知識,將△ACB構造成等邊三角形,通過全等證出∠ABC是定值,即點E的運動軌跡是直線是解決此題的關鍵.8.D解析:D【分析】作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C,此時△ABC周長最小,根據題意及作圖可得出△OAD是等腰直角三角形,OA=OE=3,所以∠OAE=∠OEA=45176。,從而證明△BOE是直角三角形,然后設AB=x,則OB=3+x,根據周長最小值可表示出BE=6-x,最后在Rt△OBE中,利用勾股定理建立方程求解即可.【詳解】解:作點A關于OM的對稱點E,AE交OM于點D,連接BE、OE,BE交OM于點C, 此時△ABC周長最小,最小值=AB+AC+BC=AB+EC+BC=AB+BE,∵△ABC周長的最小值是6,∴AB+BE=6,∵∠MON=45176。,AD⊥OM,∴△OAD是等腰直角三角形,∠OAD=45176。,由作圖可知OM垂直平分AE,∴OA=OE=3,∴∠OAE=∠OEA=45176。,∴∠AOE=90176。,∴△BOE是直角三角形,設AB=x,則OB=3+x,BE=6-x,在Rt△OBE中,解得:x=1,∴AB=1.故選D.【點睛】本題考查了利用軸對稱求最值,等腰直角三角形的判定與性質,勾股定理,熟練掌握作圖技巧,正確利用勾股定理建立出方程是解題的關鍵.9.C解析:C【分析】根據勾股定理即可得到正方形A的面積加上B的面積加上C的面積和D的面積是E的面積.即可求解.【詳解】四個正方形的面積的和是正方形E的面積:即;故答案為C.【點睛】理解正方形A,B,C,D的面積的和是E的面積是解決本題的關鍵.10.D解析:D【分析】由等式可分別得到關于a、b、c的等式,從而分別計算得到a、b、c的值,再由的關系,可推導得到△ABC為直角三角形.【詳解】∵又∵ ∴∴ ∴ ∴△ABC為直角三角形故選:D.【點睛】本題考察了平方、二次根式、絕對值和勾股定理逆定理的知識;求解的關鍵是熟練掌握二次根式、絕對值和勾股定理逆定理,從而完成求解.11.A解析:A【解析】【分析】作AD′⊥AD,AD′=AD,連接CD′,DD′,根據等式的性質,可得∠BAD與∠CAD′的關系,根據SAS,可得△BAD與△CAD′的關系,根據全等三角形的性質,可得BD與CD′的關系,根據勾股定理,可得答案.【詳解】作AD′⊥AD,AD′=AD,連接CD′,DD′,則有∠AD′D=∠D′AD=,∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD與△CAD′中,∴△BAD≌△CAD′(SAS),∴BD=CD′,∠DAD′=90176。,由勾股定理得DD′==4,∠D′DA+∠ADC=90176。,由勾股定理得CD′===6,故選A.【點睛】本題考查了全等三角形的判定與性質,利用了全等三角形的判定與性質,勾股定理,添加輔助線作出全等圖形是解題關鍵.12.B解析:B【分析】結論①錯誤,因為圖中全等的三角形有3對;結論②正確,由全等三角形的性質可以判斷;結論③錯誤,利用全等三角形和等腰直角三角形的性質可以判斷;結論④正確,利用全等三角形的性質以及直角三角形的勾股定理進行判斷.【詳解】連接CF,交DE于點P,如下圖所示結論①錯誤,理由如下:圖中全等的三角形有3對,分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質,可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,FD⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結論②正確,理由如下: ∵△AFD≌△CFE,∴S△AFD=S△CFE, ∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結論③錯誤,理由如下: ∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結論④正確,理由如下: ∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴ .故選B.【點睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識點,綜合性比較強.解決這個問題的關鍵在于利用全等三角形的性質.13.C解析:C【分析】根據勾股定理即可求出答案.【詳解】解:∵∠ACB=90176。,∴在RtABC中,m=AB==,故①②③正確,∵m2=13,9<13<16,∴3<m<4,故④錯誤,故選:C.【點睛】本題考查勾股定理及算術平方根、無理數的估算,解題的關鍵是熟練運用勾股定理,本題屬于基礎題型.14.A解析:A【分析】分別求出以AB、AC、BC為直徑的半圓及△ABC的面積,再根據S陰影=S1+S2+S△ABCS3即可得出結論.【詳解】解:如圖所示:∵∠BAC=9017
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1