freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

中考數(shù)學-易錯易錯壓軸勾股定理選擇題(3)(編輯修改稿)

2025-04-01 22:52 本頁面
 

【文章內容簡介】 理求邊長,在利用角平分線定理時必須是兩個垂直一個平分同時運用,得到到角兩邊的距離相等的結論.7.C解析:C【分析】根據(jù)為等腰三角形,分三種情況進行討論,分別求出BP的長度,從而求出t值即可.【詳解】在中,,①如圖,當時,;②如圖,當時,∵,∴,;③如圖,當時,設,則,∵在中,∴,解得:,∴,綜上所述,當為等腰三角形時,或或.故選:C.【點睛】本題考查了勾股定理,等腰三角形的性質,注意分類討論.8.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質定理分別可得,,然后設,繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,∴△EAB≌△CAM(SAS),∴,∴,∴,設,則,,∴;∵ 在Rt△ACB和Rt△DCG中,Rt△ACB≌Rt△DCG(HL),∴?!啵蔬xD.【點睛】本題主要考查了勾股定理,三角形全等的判定定理和性質定理等知識.9.A解析:A【分析】分三種情況討論:把左側面展開到水平面上,連結AB;把右側面展開到正面上,連結AB,;把向上的面展開到正面上,連結AB;然后利用勾股定理分別計算各情況下的AB,再進行大小比較.【詳解】把左側面展開到水平面上,連結AB,如圖1把右側面展開到正面上,連結AB,如圖2把向上的面展開到正面上,連結AB,如圖3∵∴ ∴需要爬行的最短距離為25cm故選:A.【點睛】本題考查了平面展開及其最短路徑問題:先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構造直角三角形解決問題.10.C解析:C【分析】根據(jù)BD、CE分別是AC、AB邊上的高,推導出;再結合題意,可證明,由此可得,;再經得,從而證明AF⊥AQ;最后由勾股定理得,從而得到,即可得到答案.【詳解】如圖,CE和BD相較于H∵BD、CE分別是AC、AB邊上的高∴, ∴ ∴ ∵ ∴ 又∵BQ=AC且CF=AB∴ ∴,,故B、D結論正確;∵ ∴ ∴∴AF⊥AQ故A結論正確;∵∴ ∵ ∴ ∴ 故選:C.【點睛】本題考查了全等三角形、直角三角形、勾股定理、三角形的高等知識;解題的關鍵是熟練掌握全等三角形、直角三角形、勾股定理、三角形的高的性質,從而完成求解.11.B解析:B【分析】本題考查三角形的中線定義,根據(jù)條件先確定ABC為直角三角形,再根據(jù)勾股定理求得 ,最后根據(jù)求解即可.【詳解】解:如圖,在中,邊上的中線,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB , ,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故選B.【點睛】本題考查三角形中位線的應用,熟練運用三角形的中線定義以及綜合分析、解答問題的能力,關鍵要懂得:在一個三角形中,如果獲知一條邊上的中線等于這一邊的一半,那么就可考慮它是一個直角三角形,通過等腰三角形的性質和內角和定理來證明一個三是直角三角形.12.B解析:B【解析】由題可知(ab)2+a2=(a+b)2,解得a=4b,所以直角三角形三邊分別為3b,4b,5b,當b=8時,4b=32,故選B.13.B解析:B【分析】根據(jù)勾股定理的逆定理分別計算各個選項,選出正確的答案.【詳解】A、能組成直角三角形,故正確;B、不能組成直角三角形,故錯誤;C、能組成直角三角形,故正確;D、能組成直角三角形,故正確;故選:B.【點睛】本題考查了勾股定理的逆定理:已知三角形ABC的三邊滿足a2+b2=c2,則三角形ABC是直角三角形.14.A解析:A【解析】A.12+22≠()2,不能構成直角三角形,故此選項符合題意;B.32+42=52,能構成直角三角形,故此選項不符合題意;C.52+122=132,能構成直角三角形,故此選項不符合題意;D.32+22=()2,能構成直角三角形,故此選項不符合題意;故選A.15.D解析:D【分析】將容器側面展開,建立A關于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如圖:將圓柱展開,EG為上底面圓周長的一半,作A關于E的對稱點A39。,連接A39。B交EG于F,則螞蟻吃到蜂蜜需爬行的最短路徑為AF+BF的長,即AF+BF=A39。B=20cm,延長BG,過A39。作A39。D⊥BG于D,∵AE=A39。E=DG=4cm,∴BD=16cm,Rt△A39。DB中,由勾股定理得:A39。D=∴則該圓柱底面周長為24cm.故選:D.【點睛】本題
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1