freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新中考數(shù)學(xué)-易錯易錯壓軸勾股定理選擇題專題練習(xí)(附答案)(6)(編輯修改稿)

2025-04-02 03:17 本頁面
 

【文章內(nèi)容簡介】 即為最短距離,根據(jù)題意:,.所以底面圓的周長為92=18cm.故選:C.【點睛】本題考查了平面展開——最短路徑問題,將圖形展開,利用軸對稱的性質(zhì)和勾股定理進行計算是解題的關(guān)鍵.6.D解析:D【分析】先根據(jù)等腰三角形的性質(zhì)得出是線段垂直平分線,再根據(jù)垂直平分線的性質(zhì)、兩點之間線段最短得出最小值為,最后根據(jù)垂線段最短、直角三角形的性質(zhì)得出BE的最小值即可得.【詳解】如圖,作,交AC于點E,∵AD平分∠BAC,∴∠BAD=∠CAD,是線段垂直平分線(等腰三角形的三線合一)由兩點之間線段最短得:當(dāng)點共線時,最小,最小值為點都是動點隨點的運動而變化由垂線段最短得:當(dāng)時,取得最小值在中,即的最小值為故選:D.【點睛】本題考查了等腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點之間線段最短等知識點,利用兩點之間線段最短和垂線段最短確認(rèn)的最小值是解題關(guān)鍵.7.C解析:C【分析】根據(jù)為等腰三角形,分三種情況進行討論,分別求出BP的長度,從而求出t值即可.【詳解】在中,,①如圖,當(dāng)時,;②如圖,當(dāng)時,∵,∴,;③如圖,當(dāng)時,設(shè),則,∵在中,∴,解得:,∴,綜上所述,當(dāng)為等腰三角形時,或或.故選:C.【點睛】本題考查了勾股定理,等腰三角形的性質(zhì),注意分類討論.8.C解析:C【分析】觀察圖形可知,小正方形的面積=大正方形的面積4個直角三角形的面積,利用已知 =21,大正方形的面積為13,可以得以直角三角形的面積,進而求出答案?!驹斀狻坑捎诖笳叫蔚倪呴L為,又大正方形的面積為13,即,而小正方形的面積表達式為,而小正方形的面積表達式為 故本題正確答案為C.【點睛】本題主要考查直角三角形,用到勾股定理的證明,正確計算是解題的關(guān)鍵.9.A解析:A【分析】連接FC,根據(jù)基本作圖,可得OE垂直平分AC,由垂直平分線的性質(zhì)得出AF=FC.再根據(jù)ASA證明△FOA≌△BOC,那么AF=BC=3,等量代換得到FC=AF=3,利用線段的和差關(guān)系求出FD=ADAF=1.然后在直角△FDC中利用勾股定理求出CD的長.【詳解】解:如圖,連接FC,∵點O是AC的中點,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA與△BOC中, ,∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,F(xiàn)D=ADAF=86=2.在△FDC中,∵∠D=90176。,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=.故選:A.【點睛】本題考查了作圖基本作圖,勾股定理,線段垂直平分線的判定與性質(zhì),全等三角形的判定與性質(zhì),難度適中.求出CF與DF是解題的關(guān)鍵.10.D解析:D【分析】由等式可分別得到關(guān)于a、b、c的等式,從而分別計算得到a、b、c的值,再由的關(guān)系,可推導(dǎo)得到△ABC為直角三角形.【詳解】∵又∵ ∴∴ ∴ ∴△ABC為直角三角形故選:D.【點睛】本題考察了平方、二次根式、絕對值和勾股定理逆定理的知識;求解的關(guān)鍵是熟練掌握二次根式、絕對值和勾股定理逆定理,從而完成求解.11.B解析:B【分析】要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答.【詳解】解:根據(jù)題意,如圖所示,最短路徑有以下三種情況:(1)沿,,剪開,得圖;(2)沿,,,剪開,得圖;(3)沿,,,剪開,得圖;綜上所述,最短路徑應(yīng)為(1)所示,所以,即.故選:B.【點睛】此題考查最短路徑問題,將長方體從不同角度展開,是解決此類問題的關(guān)鍵,注意不要漏解.12.C解析:C【分析】過作于,得出,求出,根據(jù)三角形內(nèi)角和定理求出,即可判斷①;根據(jù)角平分線性質(zhì)求出,即可判斷④和⑤;由勾股定理求出,即可判斷③;根據(jù)證,推出,同理得出,即可判斷②.【詳解】解:過作于,與的平分線相交于邊上的點,,,,故①正確;平分,,同理,故⑤正確;到的距離等于的一半,故④錯誤;由勾股定理得:,又,,同理,故③正確;在和中,同理,故②正確;故選:.【點睛】本題考查了角平分線性質(zhì),垂直定義,直角梯形,勾股定理,全等三角形的性質(zhì)和判定等知識點的應(yīng)用,主要考查學(xué)生運用定理進行推理的能力.13.D解析:D【分析】將容器側(cè)面展開,建立A關(guān)于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為最短路徑,由勾股定理求出A′D即圓柱底面周長的一半,由此即可
點擊復(fù)制文檔內(nèi)容
小學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1