freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(平行四邊形提高練習題)壓軸題訓練附詳細答案(編輯修改稿)

2025-04-01 22:02 本頁面
 

【文章內(nèi)容簡介】 1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即點P1的縱坐標為6又點P1在直線l2上,∴y=2x+8=6,∴x=﹣1,即點P1的坐標為(﹣1,6);(2)由結(jié)論得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即點P1的縱坐標為10又點P1在直線l2上,∴y=2x+8=10,∴x=1,即點P1的坐標為(1,10)【點睛】本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定及勾股定理等知識點,利用面積法列出等式是解決問題的關鍵.7.現(xiàn)有一張矩形紙片ABCD(如圖),其中AB=4cm,BC=6cm,點E是BC的中點.將紙片沿直線AE折疊,點B落在四邊形AECD內(nèi),記為點B′,過E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置關系;(2)求線段B′C的長,并求△B′EC的面積.【答案】(1)見解析;(2)S△B′EC=.【解析】【分析】(1)由折線法及點E是BC的中點,可證得△B39。EC是等腰三角形,再有條件證明∠AEF=90176。即可得到AE⊥EF;(2)連接BB′,通過折疊,可知∠EBB′=∠EB′B,由E是BC的中點,可得EB′=EC,∠ECB′=∠EB′C,從而可證△BB′C為直角三角形,在Rt△AOB和Rt△BOE中,可將OB,BB′的長求出,在Rt△BB′C中,根據(jù)勾股定理可將B′C的值求出.【詳解】(1)由折線法及點E是BC的中點,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B39。EC是等腰三角形,又∵EF⊥B′C∴EF為∠B39。EC的角平分線,即∠B′EF=∠FEC,∴∠AEF=180176。﹣(∠AEB+∠CEF)=90176。,即∠AEF=90176。,即AE⊥EF;(2)連接BB39。交AE于點O,由折線法及點E是BC的中點,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB39。C三內(nèi)角之和為180176。,∴∠BB39。C=90176。;∵點B′是點B關于直線AE的對稱點,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2將AB=4cm,BE=3cm,AE=5cm,∴AO= cm,∴BO==cm,∴BB′=2BO=cm,∴在Rt△BB39。C中,B′C==cm,由題意可知四邊形OEFB′是矩形,∴EF=OB′=,∴S△B′EC=.【點睛】考查圖形的折疊變化及三角形的內(nèi)角和定理勾股定理的和矩形的性質(zhì)綜合運用.關鍵是要理解折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,只是位置變化.8.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.9.在矩形紙片ABCD中,AB=6,BC=8,現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,連接DF.(1)說明△BEF是等腰三角形;(2)求折痕EF的長.【答案】(1)見解析;(2).【解析】【分析】(1)根據(jù)折疊得出∠DEF=∠BEF,根據(jù)矩形的性質(zhì)得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,根據(jù)矩形的性質(zhì)得出EM=AB=6,AE=BM,根據(jù)折疊得出DE=BE,根據(jù)勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.【詳解】(1)∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴∠DEF=∠BEF.∵四邊形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;(2)過E作EM⊥BC于M,則四邊形ABME是矩形,所以EM=AB=6,AE=BM.∵現(xiàn)將紙片折疊,使點D與點B重合,折痕為EF,∴DE=BE,DO=BO,BD⊥EF.∵四邊形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90176。.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案為:.【點睛】本題考查了折疊的性質(zhì)和矩形性質(zhì)、勾股定理等知識點,能熟記折疊的性質(zhì)是解答此題的關鍵.10.(1)問題發(fā)現(xiàn):如圖①,在等邊三角形ABC中,點M為BC邊上異于B、C的一點,以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關系為  ??;(2)深入探究:如圖②,在等腰三角形ABC中,BA=BC,點M為BC邊上異于B、C的一點,以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量
點擊復制文檔內(nèi)容
黨政相關相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1