freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

九年級培優(yōu)易錯試卷二次函數(shù)輔導專題訓練含答案(編輯修改稿)

2025-03-31 22:00 本頁面
 

【文章內(nèi)容簡介】 3,0).(2)存在.理由如下:∵設(shè)拋物線C1的表達式為(),把C(0,)代入可得,.∴C1的表達式為:,即.設(shè)P(p,),∴ S△PBC = S△POC+ S△BOP–S△BOC=.∵0,∴當時,S△PBC最大值為.(3)由C2可知: B(3,0),D(0,),M(1,),∴BD2=,BM2=,DM2=.∵∠MBD90176。, ∴討論∠BMD=90176。和∠BDM=90176。兩種情況:當∠BMD=90176。時,BM2+ DM2= BD2,即+=,解得:,(舍去).當∠BDM=90176。時,BD2+ DM2= BM2,即+=,解得:,(舍去) .綜上所述,或時,△BDM為直角三角形.8. 閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.(1)直接寫出點D(m,n)所有的特征線;(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當點A′在平行于坐標軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?【答案】(1)x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2);(3)拋物線向下平移或距離,其頂點落在OP上.【解析】試題分析:(1)根據(jù)特征線直接求出點D的特征線;(2)由點D的一條特征線和正方形的性質(zhì)求出點D的坐標,從而求出拋物線解析式;(2)分平行于x軸和y軸兩種情況,由折疊的性質(zhì)計算即可.試題解析:解:(1)∵點D(m,n),∴點D(m,n)的特征線是x=m,y=n,y=x+n﹣m,y=﹣x+m+n;(2)點D有一條特征線是y=x+1,∴n﹣m=1,∴n=m+1.∵拋物線解析式為,∴,∵四邊形OABC是正方形,且D點為正方形的對稱軸,D(m,n),∴B(2m,2m),∴,將n=m+1帶入得到m=2,n=3;∴D(2,3),∴拋物線解析式為.(3)①如圖,當點A′在平行于y軸的D點的特征線時:根據(jù)題意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60176。,∴∠A′OP=∠AOP=30176。,∴MN==,∴拋物線需要向下平移的距離==.②如圖,當點A′在平行于x軸的D點的特征線時,設(shè)A′(p,3),則OA′=OA=4,OE=3,EA′==,∴A′F=4﹣,設(shè)P(4,c)(c>0),在Rt△A′FP中,(4﹣)2+(3﹣c)2=c2,∴c=,∴P(4,),∴直線OP解析式為y=x,∴N(2,),∴拋物線需要向下平移的距離=3﹣=.綜上所述:拋物線向下平移或距離,其頂點落在OP上.點睛:此題是二次函數(shù)綜合題,主要考查了折疊的性質(zhì),正方形的性質(zhì),解答本題的關(guān)鍵是用正方形的性質(zhì)求出點D的坐標.9.如圖,在平面直角坐標系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點A(﹣2,0)、B(4,0)兩點,與y軸交于點C.(1)求拋物線的解析式;(2)點P從A點出發(fā),在線段AB上以每秒3個單位長度的速度向B點運動,同時點Q從B點出發(fā),在線段BC上以每秒1個單位長度的速度向C點運動,其中一個點到達終點時,另一個點也停止運動,當△PBQ存在時,求運動多少秒使△PBQ的面積最大,最大面積是多少?(3)當△PBQ的面積最大時,在BC下方的拋物線上存在點K,使S△CBK:S△PBQ=5:2,求K點坐標.【答案】(1)y=x2﹣x﹣3(2)運動1秒使△PBQ的面積最大,最大面積是(3)K1(1,﹣),K2(3,﹣)【解析】【詳解】試題分析:(1)把點A、B的坐標分別代入拋物線解析式,列出關(guān)于系數(shù)a、b的解析式,通過解方程組求得它們的值;(2)設(shè)運動時間為t秒.利用三角形的面積公式列出S△PBQ與t的函數(shù)關(guān)系式S△PBQ=﹣(t﹣1)2+.利用二次函數(shù)的圖象性質(zhì)進行解答;(3)利用待定系數(shù)法求得直線BC的解析式為y=x﹣3.由二次函數(shù)圖象上點的坐標特征可設(shè)點K的坐標為(m,m2﹣m﹣3).如圖2,過點K作KE∥y軸,交BC于點E.結(jié)合已知條件和(2)中的結(jié)果求得S△CBK=.則根據(jù)圖形得到:S△CBK=S△CEK+S△BEK=EK?m+?EK?(4﹣m),把相關(guān)線段的長度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣).解:(1)把點A(﹣2,0)、B(4,0)分別代入y=ax2+bx﹣3(a≠0),得,解得,所以該拋物線的解析式為:y=x2﹣x﹣3;(2)設(shè)運動時間為t秒,則AP=3t,BQ=t.∴PB=6﹣3t.由題意得,點C的坐標為(0,﹣3).在Rt△BOC中,BC==5.如圖1,過點Q作QH⊥AB于點H.∴QH∥CO,∴△BHQ∽△BOC,∴,即,∴HQ=t.∴S△PBQ=PB?HQ=(6﹣3t)?t=﹣t2+t=﹣(t﹣1)2+.當△PBQ存在時,0<t<2∴當t=1時,S△PBQ最大=.答:運動1秒使△PBQ的面積最大,最大面積是;(3)設(shè)直線BC的解析式為y=kx+c(k≠0).把B(4,0),C(0,﹣3)代入,得,解得,∴直線BC的解析式為y=x﹣3.∵點K在拋物線上.∴設(shè)點K的坐標為(m,m2﹣m﹣3).如圖2,過點K作KE∥y軸,交BC于點E.則點E的坐標為(m,m﹣3).∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m.當△PBQ的面積最大時,∵S△CBK:S△PBQ=5:2,S△PBQ=.∴S△CBK=.S△CBK=S△CEK+S△BEK=EK?m+?EK?(4﹣m)=4?EK=2(﹣m2+m)=﹣m2+3m.即:﹣m2+3m=.解
點擊復制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1