freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)二輪-平行四邊形-專項培優(yōu)及答案(編輯修改稿)

2025-03-30 22:25 本頁面
 

【文章內(nèi)容簡介】 對角線平分一組對角的性質(zhì),考查了全等三角形的證明和全等三角形對應(yīng)邊相等的性質(zhì),考查了三角形面積的計算,本題中求證△ABE≌△ACF是解題的關(guān)鍵.7.如圖1,矩形ABCD中,AB=8,AD=6;點E是對角線BD上一動點,連接CE,作EF⊥CE交AB邊于點F,以CE和EF為鄰邊作矩形CEFG,作其對角線相交于點H.(1)①如圖2,當(dāng)點F與點B重合時,CE=  ,CG=  ;②如圖3,當(dāng)點E是BD中點時,CE=  ,CG= ??; (2)在圖1,連接BG,當(dāng)矩形CEFG隨著點E的運動而變化時,猜想△EBG的形狀?并加以證明; (3)在圖1,的值是否會發(fā)生改變?若不變,求出它的值;若改變,說明理由; (4)在圖1,設(shè)DE的長為x,矩形CEFG的面積為S,試求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出x的取值范圍.【答案】(1), ,5, ;(2)△EBG是直角三角形,理由詳見解析;(3) ;(4)S=x2﹣x+48(0≤x≤).【解析】【分析】(1)①利用面積法求出CE,再利用勾股定理求出EF即可;②利用直角三角形斜邊中線定理求出CE,再利用相似三角形的性質(zhì)求出EF即可;(2)根據(jù)直角三角形的判定方法:如果一個三角形一邊上的中線等于這條邊的一半,則這個三角形是直角三角形即可判斷;(3)只要證明△DCE∽△BCG,即可解決問題;(4)利用相似多邊形的性質(zhì)構(gòu)建函數(shù)關(guān)系式即可;【詳解】(1)①如圖2中,在Rt△BAD中,BD==10,∵S△BCD=?CD?BC=?BD?CE,∴CE=.CG=BE=.②如圖3中,過點E作MN⊥AM交AB于N,交CD于M.∵DE=BE,∴CE=BD=5,∵△CME∽△ENF,∴,∴CG=EF=,(2)結(jié)論:△EBG是直角三角形.理由:如圖1中,連接BH.在Rt△BCF中,∵FH=CH,∴BH=FH=CH,∵四邊形EFGC是矩形,∴EH=HG=HF=HC,∴BH=EH=HG,∴△EBG是直角三角形.(3)F如圖1中,∵HE=HC=HG=HB=HF,∴C、E、F、B、G五點共圓,∵EF=CG,∴∠CBG=∠EBF,∵CD∥AB,∴∠EBF=∠CDE,∴∠CBG=∠CDE,∵∠DCB=∠ECG=90176。,∴∠DCE=∠BCG,∴△DCE∽△BCG,∴.(4)由(3)可知:,∴矩形CEFG∽矩形ABCD,∴,∵CE2=(x)2+)2,S矩形ABCD=48,∴S矩形CEFG= [(x)2+()2].∴矩形CEFG的面積S=x2x+48(0≤x≤).【點睛】本題考查相似三角形綜合題、矩形的性質(zhì)、相似三角形的判定和性質(zhì)、勾股定理、直角三角形的判定和性質(zhì)、相似多邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,學(xué)會添加常用輔助線,構(gòu)造相似三角形或直角三角形解決問題,屬于中考壓軸題.8.已知:在矩形ABCD中,AB=10,BC=12,四邊形EFGH的三個頂點E、F、H分別在矩形ABCD邊AB、BC、DA上,AE=2.(1)如圖①,當(dāng)四邊形EFGH為正方形時,求△GFC的面積;(2)如圖②,當(dāng)四邊形EFGH為菱形,且BF=a時,求△GFC的面積(用a表示);(3)在(2)的條件下,△GFC的面積能否等于2?請說明理由.【答案】(1)10;(2)12-a;(3)不能【解析】解:(1)過點G作GM⊥BC于M.在正方形EFGH中,∠HEF=90176。,EH=EF,∴∠AEH+∠BEF=90176。.∵∠AEH+∠AHE=90176。,∴∠AHE=∠BEF.又∵∠A=∠B=90176。,∴△AHE≌△BEF.同理可證△MFG≌△BEF.∴GM=BF=AE=2.∴FC=BC-BF=10.∴.(2)過點G作GM⊥BC交BC的延長線于M,連接HF.∵AD∥BC,∴∠AHF=∠MFH.∵EH∥FG,∴∠EHF=∠GFH.∴∠AHE=∠MFG.又∵∠A=∠GMF=90176。,EH=GF,∴△AHE≌△MFG.∴GM=AE=2.∴.(3)△GFC的面積不能等于2.說明一:∵若S△GFC=2,則12-a=2,∴a=10.此時,在△BEF中,.在△AHE中,∴AH>AD,即點H已經(jīng)不在邊AD上,故不可能有S△GFC=2.說明二:△GFC的面積不能等于2.∵點H在AD上,∴菱形邊EH的最大值為,∴BF的最大值為.又∵函數(shù)S△GFC=12-a的值隨著a的增大而減小,∴S△GFC的最小值為.又∵,∴△GFC的面積不能等于2.9.在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖①,當(dāng)點E自D向C,點F自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的位置關(guān)系,并說明理由;(2)如圖②,當(dāng)E,F(xiàn)分別移動到邊DC,CB的延長線上時,連接AE和DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不須證明)(3)如圖③,當(dāng)E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?請說明理由;(4)如圖④,當(dāng)E,F(xiàn)分別在邊DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最小值.【答案】(1)AE=DF,AE⊥DF;(2)是;(3)成立,理由見解析;(4)CP=QC﹣QP=.【解析】試題分析:(1)AE=DF,AE⊥DF.先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)是.四邊形ABCD是正方形,所以AD=DC,∠ADE=∠DCF=90176。,DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因為∠CDF+∠ADF=90176。,∠DAE+∠ADF=90176。,所以AE⊥DF;(3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長FD交AE于點G,再由等角的余角相等可得AE⊥DF;(4)由于點P在運動中保持∠APD=90176。,所以點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF.理由:∵四邊形ABCD是正方形,∴AD=DC,∠ADC=∠C=90176。.在△ADE和△DCF中,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90176。,∴∠DAE+∠ADF=90176。.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長FD交AE于點G,則∠CDF+∠ADG=90176。,∴∠ADG+∠DAE=90176。.∴AE⊥DF;(4)如圖:由于點P在運動中保持∠APD=90176。,∴點P的路徑是一段以AD為直徑的弧,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最小,在Rt△QDC中,QC=,∴CP=QC﹣QP=.考點:四邊形的綜合知識.10.已知點O是△ABC內(nèi)任意一點,連接OA并延長到E,使得AE=OA,以O(shè)B,OC為鄰
點擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1