freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

備戰(zhàn)中考數(shù)學(xué)-平行四邊形-綜合題及答案(編輯修改稿)

2025-03-31 22:55 本頁面
 

【文章內(nèi)容簡介】 BC,垂足為Q,根據(jù)勾股定理和矩形的性質(zhì)解答即可;【遷移拓展】分兩種情況,利用結(jié)論,求得點P到x軸的距離,再利用待定系數(shù)法可求出P的坐標(biāo).【詳解】變式探究:連接AP,如圖3: ∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴AB?CF=AC?PE﹣ AB?PD.∵AB=AC,∴CF=PD﹣PE;結(jié)論運用:過點E作EQ⊥BC,垂足為Q,如圖④,∵四邊形ABCD是長方形,∴AD=BC,∠C=∠ADC=90176。.∵AD=16,CF=6,∴BF=BC﹣CF=AD﹣CF=5,由折疊可得:DF=BF,∠BEF=∠DEF.∴DF=5.∵∠C=90176。,∴DC==8.∵EQ⊥BC,∠C=∠ADC=90176。,∴∠EQC=90176。=∠C=∠ADC.∴四邊形EQCD是長方形.∴EQ=DC=4.∵AD∥BC,∴∠DEF=∠EFB.∵∠BEF=∠DEF,∴∠BEF=∠EFB.∴BE=BF,由問題情境中的結(jié)論可得:PG+PH=EQ.∴PG+PH=8.∴PG+PH的值為8;遷移拓展:如圖,由題意得:A(0,8),B(6,0),C(﹣4,0)∴AB==10,BC=10.∴AB=BC,(1)由結(jié)論得:P1D1+P1E1=OA=8∵P1D1=1=2,∴P1E1=6 即點P1的縱坐標(biāo)為6又點P1在直線l2上,∴y=2x+8=6,∴x=﹣1,即點P1的坐標(biāo)為(﹣1,6);(2)由結(jié)論得:P2E2﹣P2D2=OA=8∵P2D2=2,∴P2E2=10 即點P1的縱坐標(biāo)為10又點P1在直線l2上,∴y=2x+8=10,∴x=1,即點P1的坐標(biāo)為(1,10)【點睛】本題考查了矩形的性質(zhì)與判定、等腰三角形的性質(zhì)與判定及勾股定理等知識點,利用面積法列出等式是解決問題的關(guān)鍵.8.如圖1,在△ABC中,AB=AC,AD⊥BC于D,分別延長AC至E,BC至F,且CE=EF,延長FE交AD的延長線于G.(1)求證:AE=EG;(2)如圖2,分別連接BG,BE,若BG=BF,求證:BE=EG;(3)如圖3,取GF的中點M,若AB=5,求EM的長.【答案】(1)證明見解析(2)證明見解析(3)【解析】【分析】(1)根據(jù)平行線的性質(zhì)和等腰三角形的三線合一的性質(zhì)得:∠CAD=∠G,可得AE=EG;(2)作輔助線,證明△BEF≌△GEC(SAS),可得結(jié)論;(3)如圖3,作輔助線,構(gòu)建平行線,證明四邊形DMEN是平行四邊形,得EM=DN=AC,計算可得結(jié)論.【詳解】證明:(1)如圖1,過E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如圖2,連接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分線,∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180176。﹣2∠F,∵BG=BF,∴∠GBF=180176。﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如圖3,連接DM,取AC的中點N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點,∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點,∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識,解題的關(guān)鍵是作輔助線,并熟練掌握全等三角形的判定方法,特別是第三問,輔助線的作法是關(guān)鍵.9.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.10.定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30176。,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1