freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)專(zhuān)題題庫(kù)∶平行四邊形的綜合題及詳細(xì)答案(編輯修改稿)

2025-03-30 22:25 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 上的高等于△AEF底邊EF上高的一半,∵GH=EF,∴S△PGH=S△AEF=S△APF,綜上所述,與△BPE面積相等的三角形為:△APE、△APF、△CPF、△PGH.【點(diǎn)睛】本題考查了矩形的判定與性質(zhì)、平行四邊形的判定、三角形中位線(xiàn)定理、平行線(xiàn)的性質(zhì)、三角形面積的計(jì)算等知識(shí),熟練掌握三角形中位線(xiàn)定理是解決問(wèn)題的關(guān)鍵.7.如圖①,四邊形是知形,點(diǎn)是線(xiàn)段上一動(dòng)點(diǎn)(不與重合),點(diǎn)是線(xiàn)段延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),已知與之間的函數(shù)關(guān)系如圖②所示.(1)求圖②中與的函數(shù)表達(dá)式。(2)求證:。(3)是否存在的值,使得是等腰三角形?如果存在,求出的值。如果不存在,說(shuō)明理由【答案】(1)y=﹣2x+4(0<x<2);(2)見(jiàn)解析;(3)存在,x=或或.【解析】【分析】(1)利用待定系數(shù)法可得y與x的函數(shù)表達(dá)式;(2)證明△CDE∽△ADF,得∠ADF=∠CDE,可得結(jié)論;(3)分三種情況:①若DE=DG,則∠DGE=∠DEG,②若DE=EG,如圖①,作EH∥CD,交AD于H,③若DG=EG,則∠GDE=∠GED,分別列方程計(jì)算可得結(jié)論.【詳解】(1)設(shè)y=kx+b,由圖象得:當(dāng)x=1時(shí),y=2,當(dāng)x=0時(shí),y=4,代入得:,得,∴y=﹣2x+4(0<x<2);(2)∵BE=x,BC=2∴CE=2﹣x,∴,∴,∵四邊形ABCD是矩形,∴∠C=∠DAF=90176。,∴△CDE∽△ADF,∴∠ADF=∠CDE,∴∠ADF+∠EDG=∠CDE+∠EDG=90176。,∴DE⊥DF;(3)假設(shè)存在x的值,使得△DEG是等腰三角形,①若DE=DG,則∠DGE=∠DEG,∵四邊形ABCD是矩形,∴AD∥BC,∠B=90176。,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,∴在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=;②若DE=EG,如圖①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四邊形CDHE是平行四邊形,∴∠C=90176。,∴四邊形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△FAG,∴,∴,∴(舍),③若DG=EG,則∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90176。,∴△CDE∽△DFE,∴,∵△CDE∽△ADF,∴,∴,∴2﹣x=,x=,綜上,x=或或.【點(diǎn)睛】本題是四邊形的綜合題,主要考查了待定系數(shù)法求一次函數(shù)的解析式,三角形相似和全等的性質(zhì)和判定,矩形和平行四邊形的性質(zhì)和判定,勾股定理和逆定理等知識(shí),運(yùn)用相似三角形的性質(zhì)是解決本題的關(guān)鍵.8.如圖1,在△ABC中,AB=AC,AD⊥BC于D,分別延長(zhǎng)AC至E,BC至F,且CE=EF,延長(zhǎng)FE交AD的延長(zhǎng)線(xiàn)于G.(1)求證:AE=EG;(2)如圖2,分別連接BG,BE,若BG=BF,求證:BE=EG;(3)如圖3,取GF的中點(diǎn)M,若AB=5,求EM的長(zhǎng).【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析(3)【解析】【分析】(1)根據(jù)平行線(xiàn)的性質(zhì)和等腰三角形的三線(xiàn)合一的性質(zhì)得:∠CAD=∠G,可得AE=EG;(2)作輔助線(xiàn),證明△BEF≌△GEC(SAS),可得結(jié)論;(3)如圖3,作輔助線(xiàn),構(gòu)建平行線(xiàn),證明四邊形DMEN是平行四邊形,得EM=DN=AC,計(jì)算可得結(jié)論.【詳解】證明:(1)如圖1,過(guò)E作EH⊥CF于H,∵AD⊥BC,∴EH∥AD,∴∠CEH=∠CAD,∠HEF=∠G,∵CE=EF,∴∠CEH=∠HEF,∴∠CAD=∠G,∴AE=EG;(2)如圖2,連接GC,∵AC=BC,AD⊥BC,∴BD=CD,∴AG是BC的垂直平分線(xiàn),∴GC=GB,∴∠GBF=∠BCG,∵BG=BF,∴GC=BE,∵CE=EF,∴∠CEF=180176。﹣2∠F,∵BG=BF,∴∠GBF=180176。﹣2∠F,∴∠GBF=∠CEF,∴∠CEF=∠BCG,∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,∴∠GCE=∠F,在△BEF和△GCE中,∴△BEF≌△GEC(SAS),∴BE=EG;(3)如圖3,連接DM,取AC的中點(diǎn)N,連接DN,由(1)得AE=EG,∴∠GAE=∠AGE,在Rt△ACD中,N為AC的中點(diǎn),∴DN=AC=AN,∠DAN=∠ADN,∴∠ADN=∠AGE,∴DN∥GF,在Rt△GDF中,M是FG的中點(diǎn),∴DM=FG=GM,∠GDM=∠AGE,∴∠GDM=∠DAN,∴DM∥AE,∴四邊形DMEN是平行四邊形,∴EM=DN=AC,∵AC=AB=5,∴EM=.【點(diǎn)睛】本題是三角形的綜合題,主要考查了全等三角形的判定與性質(zhì),直角三角形斜邊中線(xiàn)的性質(zhì),等腰三角形的性質(zhì)和判定,平行四邊形的性質(zhì)和判定等知識(shí),解題的關(guān)鍵是作輔助線(xiàn),并熟練掌握全等三角形的判定方法,特別是第三問(wèn),輔助線(xiàn)的作法是關(guān)鍵.9.已知,點(diǎn)是的角平分線(xiàn)上的任意一點(diǎn),現(xiàn)有一個(gè)直角繞點(diǎn)旋轉(zhuǎn),兩直角邊,分別與直線(xiàn),相交于點(diǎn),點(diǎn).(1)如圖1,若,猜想線(xiàn)段,之間的數(shù)量關(guān)系,并說(shuō)明理由.(2)如圖2,若點(diǎn)在射線(xiàn)上,且與不垂直,則(1)中的數(shù)量關(guān)系是否仍成立?如成立,請(qǐng)說(shuō)明理由;如不成立,請(qǐng)寫(xiě)出線(xiàn)段,之間的數(shù)量關(guān)系,并加以證明.(3)如圖3,若點(diǎn)在射線(xiàn)的反向延長(zhǎng)線(xiàn)上,且,請(qǐng)直接寫(xiě)出線(xiàn)段的長(zhǎng)度.【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質(zhì)可得;(2)過(guò)點(diǎn)作于點(diǎn),于點(diǎn),證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,,∴四邊形為矩形.∵是的角平分線(xiàn),∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過(guò)點(diǎn)作于點(diǎn),于點(diǎn),∵平分,∴四邊形為正方形,由(1)得:,在和中,∴,∴,∴.(3),∴.∵,∴,∴,∴,的長(zhǎng)度為.【點(diǎn)睛】考核知識(shí)點(diǎn):矩形,.10.如圖,現(xiàn)將平行四邊形ABCD沿其對(duì)角線(xiàn)AC折疊,使點(diǎn)B落在點(diǎn)B′處.AB′與CD交于點(diǎn)E.(1)求證:△AED≌△CEB′;(2)過(guò)點(diǎn)E作EF⊥AC交AB于點(diǎn)F,連接CF,判斷四邊形AECF的形狀并給予證明.【答案】(1)見(jiàn)解析(2)見(jiàn)解析【解析】【分析】(1)由題意可得AD=BC=B39。C,∠B=∠D=∠B39。,且∠AED=∠CEB39。,利用AAS證明全等,則結(jié)論可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根據(jù)等腰三角形的性質(zhì)可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,則可證四邊形AECF是菱形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形∴AD
點(diǎn)擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1