freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx備戰(zhàn)中考數(shù)學壓軸題專題平行四邊形的經(jīng)典綜合題附答案(編輯修改稿)

2025-04-01 22:03 本頁面
 

【文章內容簡介】 (1)如圖①,已知正方形ABCD的邊長為4.點M和N分別是邊BC、CD上兩點,且BM=CN,連接AM和BN,交于點P.猜想AM與BN的位置關系,并證明你的結論.(2)如圖②,已知正方形ABCD的邊長為4.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點C和D運動.連接AM和BN,交于點P,求△APB周長的最大值;問題解決(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60176。.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CA向終點C和A運動.連接AM和BN,交于點P.求△APB周長的最大值.【答案】(1)AM⊥BN,證明見解析;(2)△APB周長的最大值4+4;(3)△PAB的周長最大值=2+4.【解析】試題分析:根據(jù)全等三角形的判定SAS證明△ABM≌△BCN,即可證得AM⊥BN;(2)如圖②,以AB為斜邊向外作等腰直角△AEB,∠AEB=90176。,作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;(3)如圖③,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.試題解析:(1)結論:AM⊥BN.理由:如圖①中,∵四邊形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90176。,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90176。,∴∠ABN+∠BAM=90176。,∴∠APB=90176。,∴AM⊥BN.(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90176。,作EF⊥PA于E,作EG⊥PB于G,連接EP.∵∠EFP=∠FPG=∠G=90176。,∴四邊形EFPG是矩形,∴∠FEG=∠AEB=90176。,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90176。,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四邊形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周長的最大值=4+4.(3)如圖③中,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60176。,∴∠APB=120176。,∵∠AKB=60176。,∴∠AKB+∠APB=180176。,∴A、K、B、P四點共圓,∴∠BPH=∠KAB=60176。,∵PH=PB,∴△PBH是等邊三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大時,△APB的周長最大,∴當PK是△ABK外接圓的直徑時,PK的值最大,最大值為4,∴△PAB的周長最大值=2+4.9.(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為  ??;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60176。,得到正方形AB39。C39。D39。,請直接寫出BD39。平方的值.【答案】(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】【分析】(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD 和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90176。,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60176。,②以點A為旋轉中心將正方形ABCD順時針旋轉60176。,分別依據(jù)旋轉的性質以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為:AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD 和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90176。,∴∠AMF=∠MAN=∠ANF=90176。,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60176。,如圖所示:過D39。作D39。E⊥AB,交BA的延長線于E,由旋轉可得,∠DAD39。=60176。,∴∠EAD39。=30176。,∵AB=2=AD39。,∴D39。E=AD39。=,AE=,∴BE=2+,∴Rt△BD39。E中,BD39。2=D39。E2+BE2=()2+(2+)2=16+8②以點A為旋轉中心將正方形ABCD順時針旋轉60176。,如圖所示:過B作BF⊥AD39。于F,旋轉可得,∠DAD39。=60176。,∴∠BAD39。=30176。,∵AB=2=AD39。,∴BF=AB=,AF=,∴D39。F=2﹣,∴Rt△BD39。F中,BD39。2=BF2+D39。F2=()2+(2)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質,矩形的判定,旋轉的性質,線段垂直平分線的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構造直角三角形,依據(jù)勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.10.如圖1,在長方形紙片ABCD中,AB=mAD,其中m?1,將它沿EF折疊(點E.F分別在邊AB、CD上),使點B落在AD邊上的點M處,點C落在點N處,MN與CD相交于點P,其中0n?1.(1)如圖2,當n=1(即M點與D點重合),求證:四邊形BEDF為菱形;(2)如圖3,當(M為AD的中點),m的值發(fā)生變化時,求證:EP=AE+DP;(3)如圖1,當m=2(即AB=2AD),n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.【答案】(1)證明見解析;(2)證明見解析;(3)值不變,理由見解析.【解析】試題分析:(1)由條件可知,當n=1(即M點與D點重合),m=2時,AB=2AD,設AD=a,則AB=2a,由矩形的性質可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結論.(2)延長PM交EA延長線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質就可以得出結論.(3)如圖1,連接BM交EF于點Q,過點F作FK⊥AB于點K,交BM于點O,通過證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90176。,∠EDF+∠NDF=90176。,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1