freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx九年級數(shù)學(xué)-二次函數(shù)的專項-培優(yōu)練習(xí)題及詳細(xì)答案(編輯修改稿)

2025-03-30 22:22 本頁面
 

【文章內(nèi)容簡介】 點D的坐標(biāo)是(n,﹣2n2+2n+4),P(n,﹣2n+4).根據(jù)S四邊形BOAD=S△BOA+S△ABD=4+S△ABD,則當(dāng)S△ABD取最大值時,S四邊形BOAD最大.根據(jù)三角形的面積公式得到函數(shù)S△ABD=﹣2(n﹣1)2+2.由二次函數(shù)的性質(zhì)求得最值.【詳解】解:①如圖1,∵頂點M的坐標(biāo)是,∴設(shè)拋物線解析式為y=(a≠0).∵直線y=﹣2x+4交y軸于點B,∴點B的坐標(biāo)是(0,4).又∵點B在該拋物線上,∴=4,解得a=﹣2.故該拋物線的解析式為:y==﹣2x2+2x+4;②不存在.理由如下:∵拋物線y=的對稱軸是直線x=,且該直線與直線AB交于點N,∴點N的坐標(biāo)是.∴.設(shè)點P的坐標(biāo)是(m,﹣2m+4),則D(m,﹣2m2+2m+4),∴PD=(﹣2m2+2m+4)﹣(﹣2m+4)=﹣2m2+4m.∵PD∥MN.當(dāng)PD=MN時,四邊形MNPD是平行四邊形,即﹣2m2+4m=.解得 m1=(舍去),m2=.此時P(,1).∵PN=,∴PN≠MN,∴平行四邊形MNPD不是菱形.∴不存在點P,使四邊形MNPD為菱形;(2)存在,理由如下:設(shè)點D的坐標(biāo)是(n,﹣2n2+2n+4),∵點P在線段AB上且直線PD⊥x軸,∴P(n,﹣2n+4).由圖可知S四邊形BOAD=S△BOA+S△ABD.其中S△BOA=OB?OA=42=4.則當(dāng)S△ABD取最大值時,S四邊形BOAD最大.S△ABD=(yD﹣yP)(xA﹣xB)=y(tǒng)D﹣yP=﹣2n2+2n+4﹣(﹣2n+4)=﹣2n2+4n=﹣2(n﹣1)2+2.當(dāng)n=1時,S△ABD取得最大值2,S四邊形BOAD有最大值.此時點D的坐標(biāo)是(1,4).【點睛】主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標(biāo)的意義表示線段的長度,從而求出線段之間的關(guān)系.8.課本中有一道作業(yè)題:有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個頂點分別在AB,AC上.問加工成的正方形零件的邊長是多少mm?小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問題.(1)如果原題中要加工的零件是一個矩形,且此矩形是由兩個并排放置的正方形所組成,如圖1,此時,這個矩形零件的兩條邊長又分別為多少mm?請你計算.(2)如果原題中所要加工的零件只是一個矩形,如圖2,這樣,此矩形零件的兩條邊長就不能確定,但這個矩形面積有最大值,求達(dá)到這個最大值時矩形零件的兩條邊長.【答案】(1)mm,mm;(2)PN=60mm,mm.【解析】【分析】(1)、設(shè)PQ=y(mm),則PN=2y(mm),AE=80y(mm),根據(jù)平行得出△APN和△ABC相似,根據(jù)線段的比值得出y的值,然后得出邊長;(2)、根據(jù)第一題同樣的方法得出y與x的函數(shù)關(guān)系式,然后求出S與x的函數(shù)關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)得出最大值.【詳解】(1)、設(shè)PQ=y(mm),則PN=2y(mm),AE=80y(mm)∵PN∥BC, ∴=,△APN∽△ABC ∴=∴=∴=解得 y=∴2y=∴這個矩形零件的兩條邊長分別為mm,mm(2)、設(shè)PQ=x(mm),PN=y(mm),矩形面積為S ,則AE=80x(mm)..由(1)知=∴=∴ y=則S=xy===∵∴ S有最大值 ∴當(dāng)x=40時,S最大=2400(mm2) 此時,y==60 .∴面積達(dá)到這個最大值時矩形零件的兩邊PQ、PN長分別是40 mm ,60 mm.考點:三角形相似的應(yīng)用9.如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點,與y軸相交于點C(0,﹣3).(1)求這個二次函數(shù)的表達(dá)式;(2)若P是第四象限內(nèi)這個二次函數(shù)的圖象上任意一點,PH⊥x軸于點H,與BC交于點M,連接PC.①求線段PM的最大值;②當(dāng)△PCM是以PM為一腰的等腰三角形時,求點P的坐標(biāo).【答案】(1)二次函數(shù)的表達(dá)式y(tǒng)=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3,2﹣4).【解析】【分析】(1)根據(jù)待定系數(shù)法,可得答案;(2)①根據(jù)平行于y軸直線上兩點間的距離是較大的縱坐標(biāo)減較小的縱坐標(biāo),可得二次函數(shù),根據(jù)二次函數(shù)的性質(zhì),可得答案;②根據(jù)等腰三角形的定義,可得方程,根據(jù)解方程,可得答案.【詳解】(1)將A,B,C代入函數(shù)解析式,得,解得,這個二次函數(shù)的表達(dá)式y(tǒng)=x2﹣2x﹣3;(2)設(shè)BC的解析式為y=kx+b,將B,C的坐標(biāo)代入函數(shù)解析式,得,解得,BC的解析式為y=x﹣3,設(shè)M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,當(dāng)n=時,PM最大=;②當(dāng)PM=PC時,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,解得n1=0(不符合題意,舍),n2=2,n2﹣2n﹣3=3,P(2,3);當(dāng)PM=MC時,(﹣n2+3n)2=n2+(n﹣3+3)2,解得n1=0(不符合題意,舍),n2=3+(不符合題意,舍),n3=3,n2﹣2n﹣3=24,P(3,24);綜上所述:P(2,﹣3)或(3,2﹣4).【點睛】本題考查了二次函數(shù)的綜合題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰三角形等知識,綜合性較強(qiáng),解題的關(guān)鍵是認(rèn)真分析,弄清解題的思路有方法.10.如圖,若b是正數(shù),直線l:y=b與y軸交于點A;直線a:y=x﹣b與y軸交于點B;拋物線L:y=﹣x2+bx的頂點為C,且L與x軸右交點為D.(1)若AB=8,求b的值,并求此時L的對稱軸與a的交點坐標(biāo);(2)當(dāng)點C在l下方時,求點C與l距離的最大值;(3)設(shè)x0≠0,點(x0,y1),(x0,y2),(x0,y3)分別在l,a和L上,且y3是y1,y2的平均數(shù),求點(x0,0)與點D間的距離;(4)在L和a所圍成的封閉圖形的邊界上,把橫、縱坐標(biāo)都是整數(shù)的點稱為“美點”,分別直接寫出b=2019和b=“美點”的個數(shù).【答案】(1)b=4,(2,﹣2 );(2)1;(3);(4)當(dāng)b=2019時“美點”的個數(shù)為4040個,b=“美點”的個數(shù)為1010個.【解析】【分析】(1)求出A、B 的坐標(biāo),由AB=8,可求出b的值.從而得到L的解析式,找出L的對稱軸與a的交點即可;(2)通過配方,求出L的頂點坐標(biāo),由于點C在l下方,則C與l的距離,配方即可得
點擊復(fù)制文檔內(nèi)容
研究報告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1