【摘要】湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案微積分的基礎(chǔ)知識及其在Matlab中的實(shí)現(xiàn)明巍數(shù)學(xué)與統(tǒng)計學(xué)院湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案數(shù)學(xué)建模種常用的微積分知識在Matlab中的實(shí)現(xiàn)1.極限運(yùn)算2.求導(dǎo)運(yùn)算3.積分運(yùn)算4.函數(shù)的Taylor
2025-08-04 22:40
【摘要】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結(jié)論都不對解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【摘要】《微積分基本定理》導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分,體會事物間的相互轉(zhuǎn)化、對立統(tǒng)一的辯證關(guān)系,培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn),提高理性思維能力[中%國教*&育^出版@網(wǎng)]學(xué)習(xí)重點(diǎn)難點(diǎn):通過探究變速直線運(yùn)動物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,
2024-12-07 21:44
【摘要】推廣一元函數(shù)微分學(xué)二元函數(shù)微分學(xué)注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點(diǎn)構(gòu)成的集合。平面點(diǎn)集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點(diǎn)集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41
【摘要】二、二階導(dǎo)數(shù)的應(yīng)用函數(shù)極值的判定[定理]如果函數(shù)f(x)在x0附近有連續(xù)的二階導(dǎo)數(shù)f"(x),且f'(x0)=0,f"(x)≠0,那么⑴若f"(x0)<0,則函數(shù)f(x)在點(diǎn)x0處取得極大值⑵若f"(x0)>0,則函數(shù)f(x)在點(diǎn)x0處取得極小值
2025-05-14 21:46
【摘要】吉首大學(xué)畢業(yè)論文本人鄭重聲明:所呈交的論文是本人在導(dǎo)師的指導(dǎo)下獨(dú)立進(jìn)行研究所取得的研究成果。除了文中特別加以標(biāo)注引用的內(nèi)容外,本論文不包含任何其他個人或集體已經(jīng)發(fā)表或撰寫的成果作品。對本文的研究做
2025-01-13 15:29
【摘要】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39