【摘要】返回后頁前頁返回后頁前頁§5微積分學基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎上又可導出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【摘要】1.求導:(1)函數(shù)y=的導數(shù)為--------------------------------------------------------(2)y=ln(x+2)-------------------------------------;(3)y=(1+sinx)2---------------------------------------
2025-04-04 05:08
【摘要】復合函數(shù)求導法則例4設。解
2025-01-15 15:12
【摘要】微積分學基本定理與定積分的計算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測捷蛘錙張入痖儲琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2024-10-19 18:07
【摘要】柯西中值定理的證明及應用馬玉蓮(西北師范大學數(shù)學與信息科學學院,甘肅,蘭州,730070)摘要:本文多角度介紹了柯西中值定理的證明方法和應用,其中證明方法有:構造輔助函數(shù)利用羅爾定理證明,利用反函數(shù)及拉格朗日中值定理證明,利用閉區(qū)間套定理證明,利用達布定理證明,利用坐標變換證明.其應用方面有:求極限、證明不等式、證明等式、證明單調性、證明函數(shù)有界、證明一致連續(xù)
2025-06-23 14:37
【摘要】樂山師范學院畢業(yè)論文(設計)本科生畢業(yè)論文(設計)系(院)數(shù)學與信息科學學院專業(yè)數(shù)學與應用數(shù)學論文題目微分中值定理及其應用學生姓名賈孫鵬指導教師黃寬娜(副教授)班級11級數(shù)應1班
2025-06-28 18:33
【摘要】xyo1.設()lnfxxx?,若0'()2fx?,則0x?()導數(shù)微積分練習題高二數(shù)學試題第4頁共4頁1.設,若,則()A.B.C.D.2.已知函數(shù),其導函數(shù)的圖象如圖所示,則A.在(-∞,0)上為減函數(shù)B.在
2025-01-07 18:49
【摘要】1.(2011·寧夏銀川一中月考)求曲線y=x2與y=x所圍成圖形的面積,其中正確的是( )A.S=(x2-x)dx B.S=(x-x2)dxC.S=(y2-y)dy D.S=(y-)dy[答案] B[分析] 根據(jù)定積分的幾何意義,確定積分上、下限和被積函數(shù).[解析] 兩函數(shù)圖象的交點坐標是(0,0),(1,1),故積分上限是1,下限是0,
2025-06-24 18:39
【摘要】1§導數(shù)在經濟學中的應用邊際和彈性是經濟學中的兩個重要概念。用導數(shù)來研究經濟變量的邊際與彈性的方法,稱之為邊際分析與彈性分析。一、邊際分析(離散的經濟變量連續(xù)化)()fx?0x0()?fx1、定義8經濟學中,把函數(shù)?(x)的導函數(shù)稱為?(x)
2024-10-09 14:57
【摘要】湖北師范學院數(shù)學與統(tǒng)計學院數(shù)學建模實驗電子教案微積分的基礎知識及其在Matlab中的實現(xiàn)明巍數(shù)學與統(tǒng)計學院湖北師范學院數(shù)學與統(tǒng)計學院數(shù)學建模實驗電子教案數(shù)學建模種常用的微積分知識在Matlab中的實現(xiàn)1.極限運算2.求導運算3.積分運算4.函數(shù)的Taylor
2025-08-04 22:40
【摘要】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結論都不對解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-01-09 00:22
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【摘要】定義1設函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當極限存在
2025-07-22 11:10
【摘要】《微積分基本定理》導學案學習目標:,直觀了解微積分基本定理的含義,會用牛頓-萊布尼茲公式求簡單的定積分,體會事物間的相互轉化、對立統(tǒng)一的辯證關系,培養(yǎng)學生辯證唯物主義觀點,提高理性思維能力[中%國教*&育^出版@網]學習重點難點:通過探究變速直線運動物體的速度與位移的關系,使學生直觀了解微積分基本定理的含義,
2024-12-07 21:44
【摘要】推廣一元函數(shù)微分學二元函數(shù)微分學注意:善于類比,區(qū)別異同二元函數(shù)微積分一、區(qū)域二、二元函數(shù)的概念二元函數(shù)的基本概念區(qū)域平面上滿足某個條件的一切點構成的集合。平面點集:平面區(qū)域:由平面上一條或幾條曲線所圍成的部分平面點集稱為平面區(qū)域,通常記作D。0xy1
2025-07-26 01:41