【摘要】1第二章§4微分中值定理及其應(yīng)用(2)2三.微分中值定理應(yīng)用舉例21x??2211xxxx?????例1.1arctanarcsin2xxx??有),1,1(???x證,1arctanarcsin)(2x
2025-10-25 16:24
【摘要】....第四章 微分中值定理和導(dǎo)數(shù)的應(yīng)用 一、考核要求 ?、裰懒_爾定理成立的條件和結(jié)論,知道拉格朗日中值定理成立的條件和結(jié)論。 ?、蚰茏R(shí)別各種類型的未定式,并會(huì)用洛必達(dá)法則求它們的極限?! 、髸?huì)判別函數(shù)的單調(diào)性,會(huì)用單調(diào)性求函數(shù)的單調(diào)區(qū)間,并會(huì)利用函數(shù)的單調(diào)性證明簡單的不等式。
2025-06-16 17:19
【摘要】1第三章中值定理與導(dǎo)數(shù)應(yīng)用第三章中值定理與導(dǎo)數(shù)應(yīng)用§3-1中值定理§3-2洛必達(dá)法則§3-3函數(shù)單調(diào)性的判別§3-4函數(shù)的極值與最值§3-5建模與最優(yōu)化§3-6曲線的凹凸判別2第三章中值定理與導(dǎo)數(shù)應(yīng)用§3
2025-08-04 10:06
【摘要】第四節(jié)高階導(dǎo)數(shù)一高階導(dǎo)數(shù)的定義二高階導(dǎo)數(shù)的求法三萊布尼茲公式四小結(jié)問題:變速直線運(yùn)動(dòng)的加速度dtdststv???)()(則速度為設(shè)),(tss?.])([)()(??????tstvtava,的變化率對時(shí)間是速度加速度t?.)())(()()(lim))(()()(0
2025-05-13 02:30
【摘要】微積分基本定理變速直線運(yùn)動(dòng)中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運(yùn)動(dòng)中位移為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),求物體在這段時(shí)間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2025-08-16 01:33
【摘要】《微積分基本定理》教案[來源:中國%@^教*育~出版網(wǎng)]一、教學(xué)目標(biāo)[中@*國&教^育出版#網(wǎng)]通過實(shí)例,直觀了解微積分基本定理的含義,會(huì)用牛頓-萊布尼茲公式求簡單的定積分二、教學(xué)重難點(diǎn)重點(diǎn)通過探究變速直線運(yùn)動(dòng)物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,并能正確運(yùn)用基本定理計(jì)算簡單的
2025-11-28 21:43
【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線)(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍
2025-08-11 16:42
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2025-08-21 12:42
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
【摘要】返回后頁前頁返回后頁前頁§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項(xiàng)二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【摘要】1.求導(dǎo):(1)函數(shù)y=的導(dǎo)數(shù)為--------------------------------------------------------(2)y=ln(x+2)-------------------------------------;(3)y=(1+sinx)2---------------------------------------
2025-04-04 05:08
【摘要】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2026-01-06 15:12
【摘要】微積分學(xué)基本定理與定積分的計(jì)算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測捷蛘錙張入痖儲(chǔ)琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2025-10-10 18:07
【摘要】柯西中值定理的證明及應(yīng)用馬玉蓮(西北師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,甘肅,蘭州,730070)摘要:本文多角度介紹了柯西中值定理的證明方法和應(yīng)用,其中證明方法有:構(gòu)造輔助函數(shù)利用羅爾定理證明,利用反函數(shù)及拉格朗日中值定理證明,利用閉區(qū)間套定理證明,利用達(dá)布定理證明,利用坐標(biāo)變換證明.其應(yīng)用方面有:求極限、證明不等式、證明等式、證明單調(diào)性、證明函數(shù)有界、證明一致連續(xù)
2025-06-23 14:37
【摘要】樂山師范學(xué)院畢業(yè)論文(設(shè)計(jì))本科生畢業(yè)論文(設(shè)計(jì))系(院)數(shù)學(xué)與信息科學(xué)學(xué)院專業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)論文題目微分中值定理及其應(yīng)用學(xué)生姓名賈孫鵬指導(dǎo)教師黃寬娜(副教授)班級11級數(shù)應(yīng)1班
2025-06-28 18:33