【摘要】2022/2/131P59習題作業(yè)預習P60—67.P70—788.9(3)(6).11(2)(6).12.13.2022/2/132第五講導數與微分(一)二、導數定義與性質五、基本導數(微分)公式一、引言三、函
2025-01-16 06:28
【摘要】第四節(jié)一階線性微分方程一階線性微分方程標準形式:)()(ddxQyxPxy??若Q(x)?0,0)(dd??yxPxy若Q(x)?0,稱為非齊次方程.1.解齊次方程分離變量兩邊積分得CxxPylnd)(ln????故通解為xxPCyd)(e???稱為齊次方程
2025-07-22 11:17
【摘要】1多元函數的微積分主要內容:一.多元函數的概念二.二元函數的極限和連續(xù)三.偏導數的概念及簡單計算四.全微分五.空間曲線的切線與法平面六.曲面的切平面與法線七.多元函數的極值2設D是平面上的一個點集.如果對于每個點P(x,y)?D,變量z按照一定法則總有確定的值和它對應,
2025-04-28 23:40
【摘要】第七節(jié)(1)二階常系數齊次線性微分方程xrye?和它的導數只差常數因子,代入①得0e)(2???xrqprr02???qrpr稱②為微分方程①的特征方程,1.當042??qp時,②有兩個相異實根方程有兩個線性無關的特解:因此方程的通解為xrxrCCy21ee21??(r為待定常數
2025-04-21 04:31
【摘要】第四節(jié)高階導數一高階導數的定義二高階導數的求法三萊布尼茲公式四小結問題:變速直線運動的加速度dtdststv???)()(則速度為設),(tss?.])([)()(??????tstvtava,的變化率對時間是速度加速度t?.)())(()()(lim))(()()(0
2025-05-13 02:30
【摘要】第二章導數與微分?導數的概念?函數的和、差、積、商的求導法則?復合函數的求導法則?隱函數的導數?初等函數的導數?﹡導數的經濟定義?高階導數?函數的微分下頁1.導數的定義2.導數的幾何意義3.可導與連續(xù)的關系首頁上頁下頁
2024-09-28 14:11
【摘要】二、線性微分方程解的結構三、二階常系數齊次線性方程解法五、小結思考題第五節(jié)二階常系數線性微分方程四、二階常系數非齊次線性方程解法一、定義一、定義0??????qyypy二階常系數齊次線性方程的標準形式)(xfqyypy??????二階常系數非齊次線性方程的標準形式二、線性微分方程的解的結構
2025-08-21 12:45
【摘要】第四章初等函數的導數與積分4-1對數函數的導數與積分4-2指數函數的導數與積分4-3三角函數的導數與積分1.對數2.對數微分3.對數函數的積分4-1對數函數的導數與積分對數在對數函數f(x)=logax中:(1)若底數a=10,我們稱其為常用對數函數,
2025-07-21 19:54
【摘要】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時,當0)(?xf二階線性齊次微分方程時,當0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結構])[(11?
2025-01-19 08:36
【摘要】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設函數)(
2025-08-21 12:46
【摘要】三、微分的應用,,0)()(00很小時且處的導數在點若xxfxxfy????例1?,,10問面積增大了多少厘米半徑伸長了厘米的金屬圓片加熱后半徑解,2rA??設.,10厘米厘米???rrrrdAA???????2????).(2厘米??.)(0xxf???00xxxxdyy?
【摘要】第二節(jié)可分離變量的微分方程dxxfdyyg)()(?可分離變量的微分方程.5422yxdxdy?例如,2254dxxdyy???解法???dxxfdyyg)()(設)(yG和)(xF分別為)(yg和)(xf的原函數,則CxFyG??)()(為微分方程的通解.例1.求微分
2025-08-01 16:24
【摘要】第十節(jié)函數的極值與最值一、函數的極值及其求法oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x定義使得有則稱為的一個極大值點(或極小值點)極大值點與極小值點統(tǒng)稱為極值點.極大值與極小值統(tǒng)稱為極值.
2025-07-22 11:11
【摘要】一、函數極限的定義三、小結思考題二、函數極限的性質第二節(jié)函數的極限一、函數極限的定義在自變量的某個變化過程中,如果對應的函數值無限接近于某個確定的常數,那么這個確定的數叫做自變量在這一變化過程中函數的極限。下面,我們將主要研究以下兩種情形:;的變化情形對應的函數值任意接近于有限值自
2025-08-21 12:44
【摘要】復合函數求導法則性質且點可導在則點可導在而點可導在設,)]([,)()(,)(0000xxgfyxguufyxxgu????)63(dddddd??xuuyxy00))]([(ddxxxxxgfxy????))]([(dd??xgfxy寫成導函數的形式為簡寫為)()(00x
2025-01-20 05:44