【摘要】一、定積分的元素法二、平面圖形的面積第七節(jié)定積分的幾何應(yīng)用三、旋轉(zhuǎn)體的體積四、平行截面面積已知的立體的體積五、小結(jié)回顧曲邊梯形求面積的問(wèn)題()dbaAfxx??一、定積分的元素法曲邊梯形由連續(xù)曲線(xiàn))(xfy?)0)((?xf、x軸與兩條直線(xiàn)ax?、bx?所圍
2025-08-11 16:42
【摘要】一、由邊際函數(shù)求原函數(shù)二、由變化率求總量第八節(jié)定積分的經(jīng)濟(jì)應(yīng)用三、收益流的現(xiàn)值和將來(lái)值一、由邊際函數(shù)求原函數(shù)25()7Cxx???0()(0)()dxCxCCxx????0251000(7)dxxx????例1已知邊際成本為,固
2025-08-21 12:42
【摘要】主要內(nèi)容典型例題第三章導(dǎo)數(shù)與微分習(xí)題課求導(dǎo)法則基本公式導(dǎo)數(shù)xyx????0lim微分dyyx???關(guān)系ddddd()yyyyxyyoxx??????????高階導(dǎo)數(shù)一、
【摘要】返回后頁(yè)前頁(yè)返回后頁(yè)前頁(yè)§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項(xiàng)二、換元積分法與分部積分法返回返回后頁(yè)前頁(yè)返回后頁(yè)前頁(yè)
2025-08-20 09:08
【摘要】1.求導(dǎo):(1)函數(shù)y=的導(dǎo)數(shù)為--------------------------------------------------------(2)y=ln(x+2)-------------------------------------;(3)y=(1+sinx)2---------------------------------------
2025-04-04 05:08
【摘要】復(fù)合函數(shù)求導(dǎo)法則例4設(shè)。解
2026-01-06 15:12
【摘要】微積分學(xué)基本定理與定積分的計(jì)算暝歡梅裟贐潿咚妞耐浩徙羸倆橋瓣嫣蛙乩浜囹眇嚷陲牌攪殉蹩瞿尕莰宗乒辱玲鏍伎雒霖科返測(cè)捷蛘錙張入痖儲(chǔ)琳憒.)()(???babadttfdxxf且存在則有定積分上可積在若?badxxfbaf)(,],[因而有上可積在,],[xaf存在],[bax???xadt
2025-10-10 18:07
【摘要】柯西中值定理的證明及應(yīng)用馬玉蓮(西北師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院,甘肅,蘭州,730070)摘要:本文多角度介紹了柯西中值定理的證明方法和應(yīng)用,其中證明方法有:構(gòu)造輔助函數(shù)利用羅爾定理證明,利用反函數(shù)及拉格朗日中值定理證明,利用閉區(qū)間套定理證明,利用達(dá)布定理證明,利用坐標(biāo)變換證明.其應(yīng)用方面有:求極限、證明不等式、證明等式、證明單調(diào)性、證明函數(shù)有界、證明一致連續(xù)
2025-06-23 14:37
【摘要】樂(lè)山師范學(xué)院畢業(yè)論文(設(shè)計(jì))本科生畢業(yè)論文(設(shè)計(jì))系(院)數(shù)學(xué)與信息科學(xué)學(xué)院專(zhuān)業(yè)數(shù)學(xué)與應(yīng)用數(shù)學(xué)論文題目微分中值定理及其應(yīng)用學(xué)生姓名賈孫鵬指導(dǎo)教師黃寬娜(副教授)班級(jí)11級(jí)數(shù)應(yīng)1班
2025-06-28 18:33
【摘要】xyo1.設(shè)()lnfxxx?,若0'()2fx?,則0x?()導(dǎo)數(shù)微積分練習(xí)題高二數(shù)學(xué)試題第4頁(yè)共4頁(yè)1.設(shè),若,則()A.B.C.D.2.已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,則A.在(-∞,0)上為減函數(shù)B.在
2025-12-29 18:49
【摘要】1.(2011·寧夏銀川一中月考)求曲線(xiàn)y=x2與y=x所圍成圖形的面積,其中正確的是( )A.S=(x2-x)dx B.S=(x-x2)dxC.S=(y2-y)dy D.S=(y-)dy[答案] B[分析] 根據(jù)定積分的幾何意義,確定積分上、下限和被積函數(shù).[解析] 兩函數(shù)圖象的交點(diǎn)坐標(biāo)是(0,0),(1,1),故積分上限是1,下限是0,
2025-06-24 18:39
【摘要】1§導(dǎo)數(shù)在經(jīng)濟(jì)學(xué)中的應(yīng)用邊際和彈性是經(jīng)濟(jì)學(xué)中的兩個(gè)重要概念。用導(dǎo)數(shù)來(lái)研究經(jīng)濟(jì)變量的邊際與彈性的方法,稱(chēng)之為邊際分析與彈性分析。一、邊際分析(離散的經(jīng)濟(jì)變量連續(xù)化)()fx?0x0()?fx1、定義8經(jīng)濟(jì)學(xué)中,把函數(shù)?(x)的導(dǎo)函數(shù)稱(chēng)為?(x)
2025-09-30 14:57
【摘要】湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案微積分的基礎(chǔ)知識(shí)及其在Matlab中的實(shí)現(xiàn)明巍數(shù)學(xué)與統(tǒng)計(jì)學(xué)院湖北師范學(xué)院數(shù)學(xué)與統(tǒng)計(jì)學(xué)院數(shù)學(xué)建模實(shí)驗(yàn)電子教案數(shù)學(xué)建模種常用的微積分知識(shí)在Matlab中的實(shí)現(xiàn)1.極限運(yùn)算2.求導(dǎo)運(yùn)算3.積分運(yùn)算4.函數(shù)的Taylor
2025-08-04 22:40
【摘要】167。定積分與微積分基本定理一、選擇題1.與定積分∫3π01-cosxdx相等的是().A.2∫3π0sinx2dxB.2∫3π0??????sinx2dxC.??????2∫3π0sinx2dxD.以上結(jié)論都不對(duì)解析∵1-cosx=2sin2x2,∴∫3π01-cos
2025-12-31 00:22
【摘要】abxyo??A曲邊梯形由連續(xù)曲線(xiàn)實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線(xiàn)ax?、bx?所圍成.第五節(jié)定積分一、問(wèn)題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11