freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理說課稿五篇范例(完整版)

2024-11-15 05:02上一頁面

下一頁面
  

【正文】 創(chuàng)造條件。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎上得出的。(二)特殊入手,發(fā)現(xiàn)規(guī)律問題3:在初中,我們已經(jīng)學習了《銳角三角函數(shù)和解直角三角形》這一章,老師想試試你的實力,請你根據(jù)初中知識,解決這樣一個問題。情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數(shù)學規(guī)律的數(shù)學思想方法,通過平面幾何、三角形函數(shù)、正弦定理、向量的數(shù)量積等知識間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一。這部分內(nèi)容從知識體系上看,應屬于三角函數(shù)這一章,從研究方法上看,也可以歸屬于向量應用的一方面。3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。c=10cm(2)A=60176。在△ABC中,已知a=20cm,b=28cm,A=40176。在△ABC中,已知A=32176。(三)邏輯推理,證明猜想1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。學法:指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。因此,正弦定理的知識非常重要。,B=45176。,B=176。?引導學生猜想結論對任意三角形都適用嗎?邏輯推理,證明猜想?強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。二、學情分析本節(jié)課授課的對象是高一學生。第一篇:正弦定理說課稿今天我說課的題目是“正弦定理”,本節(jié)課選自人教A版必修5第一章第一節(jié)的內(nèi)容。在此之前學生已經(jīng)學習了三角函數(shù)和平面向量的知識,為本節(jié)課的學習奠定了基礎。在證明時要注意分類討論。,a=,結果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可直接利用正弦定理來解三角形。,c=20cm △ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30176。學情分析:作為高一學生,同學們已經(jīng)掌握了基本的三角函數(shù),特別是在一些特殊三角形中,而學生們在解決任意三角形的邊與角問題,就比較困難。讓學生在問題情景中學習,觀察,類比,思考,探究,動手嘗試相結合,增強學生由特殊到一般的數(shù)學思維能力,鍥而不舍的求學精神。2.鼓勵學生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。B=81。解三角形。B=45176。(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導出正弦定理。從某種意義講,這部分內(nèi)容是用代數(shù)方法解決幾何問題的典型內(nèi)容之一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數(shù)學學習興趣和主動性,鍛煉探究精神。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?引導啟發(fā)學生發(fā)現(xiàn)特殊情形下的正弦定理(三)類比歸納,嚴格證明問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現(xiàn)在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。不管怎樣,我們說在10以前,人們就發(fā)現(xiàn)了這個充滿著數(shù)學美的結論,不能不說也是人類數(shù)學史上的一個奇跡。強化練習讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。新課標指出:高中教育屬于基礎教育,具有基礎性,且具有多樣性與選擇性,使不同的學生在數(shù)學上得到不同的發(fā)展。二、說學情合理把握學情是上好一堂課的基礎,下面我來談談學生的實際情況。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點為:正弦定理。在學生回顧之后,再提問:能否得到這個邊、角關系準確量化的表示?引出本節(jié)課學習的內(nèi)容——正弦定理。并且在整個過程中,講授法、引導法、合作探究等多種教學方法的使用,不但讓學生學會知識,也培養(yǎng)學生的學習能力。(3)情感目標:通過設立問題情境,激發(fā)學生的學習動機和好奇心理,使其主動參與雙邊交流活動。為了提高課堂效率,便于學生動手練習,我把本節(jié)課的例題、課堂練習制作成一張習題紙,課前發(fā)給學生。一、教材分析本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時??家恍┙獯痤}。三、學法指導學生掌握“觀察——猜想——證明——應用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應用于對任意三角形性質(zhì)的探究。,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。,解三角形.例2較難,使學生明確,利用正弦定理求角有兩種可能。 (2)c=54cm,b=39cm,C=115176。正弦定理說課稿6大家好,今天我向大家說課的題目是《正弦定理》。教學難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。2.正弦定理的內(nèi)容,討論可以解決哪幾類有關三角形的問題。,解三角形.例2較難,使學生明確,利用正弦定理求角有兩種可能。(2)c=54cm,b=39cm,C=115176。)(八)任務后延,自主探究如果已知一個三角形的兩邊及其夾角,要求第三邊,怎么辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)內(nèi)容,余弦定理。教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學生幫助別人的熱情和學習的興趣,從而進入今天的學習課題。2.正弦定理的內(nèi)容,討論可以解決哪幾類有關三角形的問題。“平面向量”則安排在必修模塊數(shù)學4中。而《普通高中數(shù)學課程標準》則關注運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關的實際問題,側重點放在學生探究和推理能力的培養(yǎng)上。二、說學情本節(jié)授課對象是高二學生,是在學生學習了必修四基本初等函數(shù)和三角恒等變換的基礎上,由實際問題出發(fā)探索研究三角形邊角關系,得出正弦定理。新課引入——提出問題,激發(fā)學生的求知欲。定理的推導是數(shù)學學習必不可少的一種能力,因此進行了如下推導過程。因此,正弦定理和余弦定理的知識非常重要。教學重點:正弦定理的內(nèi)容,正弦定理的證明及基本應用。七 教學過程第一:創(chuàng)設情景,大概用2分鐘第二:實踐探究,形成概念,大約用25分鐘第三:例題講解,習題應用,大約用13分鐘(一)創(chuàng)設情境,布疑激趣“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“在生活中,架設橋梁,鋪設管道、牽電線等等,我們都需要測量很遠的2點之間的關系。(四)歸納總結,簡單應用,引導學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受?!鰽BC中,已知a=20cm,b=28cm,A=40176。,c=20cm△ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30176。在強調(diào)研究性學習方法,注重學生的主體地位,調(diào)動學生積極性,使數(shù)學教學成為數(shù)學活動的教學。布置作業(yè),預習下一節(jié)內(nèi)容。學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。要求學生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。(二)探尋特例,提出猜想,從自身熟悉的特例(測河寬做直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。四、教法根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學業(yè)生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導,以學生為主體,訓練為主線的指導思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。同時學生已經(jīng)具備了一定的自學能力,多數(shù)同學對數(shù)學的學習有相當?shù)呐d趣和積極性。并且將學生分成小組去討論該如何推導證明該定理。例題處理——始終由問題出發(fā),層層設疑,讓他們在探索中得到知識。三、說教學目標【知識與技能目標】能準確寫出正弦定理的符號表達式,能夠運用正弦定理理解三角形、初步解決某些測量和幾何計算有關的簡單的實際問題。而《普通高中數(shù)學課程標準》將解三角形作為幾何度量問題來處理,突出幾何的作用,為學生理解數(shù)學中的量化思想、為進一步學習數(shù)學奠定基礎。(2)通過解三角形的應用的教學,提高運用所學知識解決實際問題的能力。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。二 教法為了更有效地突出重點,突破難點,本節(jié)課 采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導下,以學生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導,并逐步得到深化。五板書設計正弦定理1正弦定理2證明方法:3利用正弦定理能夠解決兩類問題:(1)平面幾何法(1)已知兩角和一邊(2)向量法(2)已知兩邊和其中一邊的對角例題板書設計可以讓學生一目了然本節(jié)課所學的知識,證明正弦定理的方法以及正弦定理可以解決的兩類問題。(七)小結反思,提高認識通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結合的數(shù)學思想。完了把時間交給學生。自己參與實際問題的解決,能激發(fā)學生知識后用于實際的價值觀。2.那結論對任意三角形都適用嗎?指導學生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。一教材分析本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學習的三角形的邊和角的基本關系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時??家恍┙獯痤}。(六)小結反思(3分鐘)
點擊復制文檔內(nèi)容
研究報告相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1