【摘要】函數(shù)模型及其應(yīng)用一、基礎(chǔ)過關(guān)1.已知某食品5kg價格為40元,則該食品價格與重量之間的函數(shù)關(guān)系為________,8kg食品的價格為________元.?dāng)?shù)關(guān)系,其圖象如右圖所示,由圖中給出的信息可知,營銷人員沒有銷售量時的收入是________元.3.某商品價格前兩年每年遞增20%,后兩
2024-12-08 05:55
【摘要】?1?14?2)4sin(????xy2)4sin(????xy§函數(shù))sin(????Ay的圖象【學(xué)習(xí)目標(biāo)、細(xì)解考綱】“五點(diǎn)法”作出函數(shù))(???wxAsmy以及函數(shù))cos(???wxAy的圖象的圖象。AW、、?對函數(shù))sin???wxAy
2024-11-30 07:39
【摘要】學(xué)習(xí)目標(biāo):1、借助單位圓理解任意角的三角函數(shù)的定義2、認(rèn)識任意角的定義、定義域、函數(shù)值的符號3、會用公式(一)4、能初步應(yīng)用定義解決與三角函數(shù)值有關(guān)的簡單問題任意角的三角函數(shù)sinyr??cosxr??tanyx??O|OA|=rYA(x,y)A?X單位圓:
2024-11-18 08:49
【摘要】第一篇:高中數(shù)學(xué)-三角函數(shù)公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsi...
2024-10-11 20:10
【摘要】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對于任意一個0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
2024-12-05 10:17
【摘要】 課時作業(yè)21 函數(shù)y=Asin(ωx+φ)的圖象及簡單三角函數(shù)模型的應(yīng)用 [基礎(chǔ)達(dá)標(biāo)] 一、選擇題 1.[2021·唐山聯(lián)考]把函數(shù)y=sin的圖象向左平移個單位長度后,所得函數(shù)圖象的一...
2025-04-05 06:01
【摘要】yOxαP(x,y)α的終邊P(x,y)α的終邊αyOx任意角的三角函數(shù)的定義xrMyMxryyOxαP(x,y)α的終邊P(x,y)α的終邊αyOxxrMyMxrysinyr
2024-08-14 18:30
【摘要】3.2二倍角的三角函數(shù)我們知道,兩角和的正弦、余弦、正切公式與兩角差的正弦、余弦、正切公式是可以互相化歸的.當(dāng)兩角相等時,兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?二倍角公式又有何重要作用呢?1.在S(α+β)中,令________,可得到sin2α=________,它簡記為S
2024-12-05 10:15
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
2024-12-09 03:46
【摘要】(第一課時)終邊相同的角同一三角函數(shù)值相等.)(tan)2tan(cos)2cos(sin)2sin(zkkkk???????????????????誘導(dǎo)公式一:利用誘導(dǎo)公式一,我們可以把任意角三角函數(shù)的求值問題轉(zhuǎn)化為00~3600的求值問題.
2024-11-17 17:35
【摘要】【學(xué)案導(dǎo)學(xué)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)函數(shù)模型及其應(yīng)用課時作業(yè)蘇教版必修1課時目標(biāo).、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)模型解決實(shí)際問題.生活中的簡單問題,培養(yǎng)對數(shù)學(xué)模型的應(yīng)用意識.1.幾種常見的函數(shù)模型(1)一次函數(shù):y=kx+b(k≠0)(2)二次函數(shù):y=ax2+bx+c(a≠
2024-11-27 23:27
【摘要】三角函數(shù)第一教時教材:角的概念的推廣目的:要求學(xué)生掌握用“旋轉(zhuǎn)”定義角的概念,并進(jìn)而理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義。過程:一、提出課題:“三角函數(shù)”回憶初中學(xué)過的“銳角三角函數(shù)”——它是利用直角三角形中兩邊的比值來定義的。相對于現(xiàn)在,我們研究的三角函數(shù)是“任意角的三角函數(shù)”,它對我們今后的學(xué)習(xí)和研究都起著十分重要的作用,并且在各門學(xué)科技術(shù)中都有
2025-04-17 12:37