【摘要】拋物線的簡單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】掌握拋物線的范圍、對稱性、頂點(diǎn)、離心率等幾何性質(zhì).【自主學(xué)習(xí)】根據(jù)拋物線的標(biāo)準(zhǔn)方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對稱性3.頂點(diǎn)4.離心率拋物線上的點(diǎn)M與焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2024-12-05 06:40
【摘要】1拋物線及其標(biāo)準(zhǔn)方程(一)2球在空中運(yùn)動(dòng)的軌跡是拋物線規(guī)律,那么拋物線它有怎樣的幾何特征呢?二次函數(shù)2(0)yaxbxca????又到底是一條怎樣的拋物線?拋物線及其標(biāo)準(zhǔn)方程(一)3復(fù)習(xí)回顧:我們知道,橢圓、雙曲線的有共同的幾何特征:都可
2024-11-17 12:02
【摘要】高二數(shù)學(xué)備課組的絕對值平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的差等于常數(shù)的點(diǎn)的軌跡叫做雙曲線.(小于︱F1F2︱)定義:oF2F1M12222??byax12222??b
2024-11-18 12:09
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡單幾何性質(zhì)》教學(xué)目標(biāo)?知識(shí)與技能目標(biāo)?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點(diǎn)、漸近線的概念;掌握雙曲線的標(biāo)準(zhǔn)方程、會(huì)用雙曲線的定義解決實(shí)際
2024-11-30 12:26
【摘要】拋物線復(fù)習(xí)課【知識(shí)回顧】標(biāo)準(zhǔn)方程圖形焦點(diǎn)準(zhǔn)線)0(22??ppxy)0(22??ppyxxyoF.xyFo)0,2(pF.yxoF2px??)2,0(pFxoyF2py??)0(22
2024-11-18 13:30
【摘要】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點(diǎn)的軌跡.平面內(nèi)與兩定點(diǎn)F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點(diǎn)的軌跡是什么呢?平面內(nèi)與兩定點(diǎn)F1、F2的距離的復(fù)習(xí)|M
2024-11-19 16:21
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué).1量詞教學(xué)案蘇教版選修1-1班級:高二()班姓名:____________教學(xué)目標(biāo):1.通過實(shí)例理解全稱量詞和存在量詞的意義;2.掌握全稱命題和存在性命題的定義,并能判斷其真假.教學(xué)重點(diǎn):對全稱命題和存在性命題的理解.教學(xué)難點(diǎn):如何判斷命題的真假.教學(xué)方法:問
2024-11-20 00:31
【摘要】§橢圓的簡單幾何性質(zhì)課時(shí)安排5課時(shí)從容說課本節(jié)主要是通過對橢圓的標(biāo)準(zhǔn)方程的討論,研究橢圓的幾何性質(zhì),而這種依據(jù)曲線的方法去討論曲線的幾何性質(zhì)是學(xué)習(xí)解析幾何以來的第一次,因此在教學(xué)中,不僅要注意對研究結(jié)果的理解和應(yīng)用,而且應(yīng)注意對研究方法的學(xué)習(xí).由于學(xué)生己對由函數(shù)的解析式研究函數(shù)的性質(zhì)或其圖象的特點(diǎn)比較熟悉,所以在學(xué)習(xí)由
2024-12-08 22:39
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1、會(huì)用雙曲線性質(zhì)求雙曲線的基本量;2、理解雙曲線的離心率與漸近線的關(guān)系【課前預(yù)習(xí)】1、若焦點(diǎn)坐標(biāo)是(5,0),(-5,0),漸近線方程為43yx??,則雙曲線的方程為__________2、雙曲線
【摘要】拋物線及其標(biāo)準(zhǔn)方程同步練習(xí)一,選擇題:1.經(jīng)過點(diǎn)P(4,-2)的拋物線的標(biāo)準(zhǔn)方程是()(A)y2=x或x2=y(B)y2=-x或x2=8y(C)x2=-8y或y2=x(D)x2=-8y或y2=-x2.平面上動(dòng)點(diǎn)P到定點(diǎn)F(1,0)的距離比到y(tǒng)
2024-12-05 06:33
【摘要】拋物線及其標(biāo)準(zhǔn)方程同步試題一、選擇題1.若是定直線外的一定點(diǎn),則過與相切圓的圓心軌跡是()A.圓B.橢圓C.雙曲線一支D.拋物線2.拋物線的焦點(diǎn)到準(zhǔn)線的距離是()A.B.5C.D.103.已知原點(diǎn)
2024-12-02 10:24
【摘要】§拋物線的幾何性質(zhì)設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】,并能從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)這些性質(zhì).,推導(dǎo)拋物線的性質(zhì),從而培養(yǎng)學(xué)生分析、歸納、推理等能力【學(xué)習(xí)重點(diǎn)】理解并掌握拋物線的幾何性質(zhì)【學(xué)習(xí)難點(diǎn)】能從拋物線的標(biāo)準(zhǔn)方程出發(fā),推導(dǎo)這些性質(zhì)【知識(shí)銜接
2024-12-08 17:46