【摘要】雙曲線的幾何性質(zhì)濟源三中盧新民一、知識再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓
2025-11-09 10:03
【摘要】圓錐曲線教學(xué)過程設(shè)計1.問題情境我們知道,用一個平面截一個圓錐面,當(dāng)平面經(jīng)過圓錐面的頂點時,可得到兩條相交直線,當(dāng)平面與圓錐面的軸垂直時,截得的圖形是一個圓,試改變平面的位置,觀察截得的圖形的變化情況。提出問題:用平面去截圓錐面能得到哪些曲線?2.學(xué)生活動學(xué)生討論上述問題,通過觀察,可以得到以下三種不同的曲線:
2025-11-29 21:22
【摘要】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)橢圓的標(biāo)準(zhǔn)方程(2)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.掌握橢圓的標(biāo)準(zhǔn)方程及求標(biāo)準(zhǔn)方程的方法.[2.能根據(jù)橢圓的標(biāo)準(zhǔn)方程判定其焦點所在位置.教學(xué)重點:求橢圓標(biāo)準(zhǔn)方程的方法及根據(jù)方程確定焦點位置.教學(xué)難點:求橢圓標(biāo)準(zhǔn)方程的方法.教學(xué)過程:一、復(fù)習(xí)導(dǎo)引1.已知橢圓的方程為19252
2025-11-25 18:02
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》橢圓的簡單幾何性質(zhì)及其應(yīng)用(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):a,b,c之間的關(guān)系.,并能利用簡單幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程.,討論研究其幾何性質(zhì),使學(xué)生初步嘗試?yán)脵E圓的標(biāo)準(zhǔn)方程來研究橢圓的幾何性質(zhì)的基本方法,加深對曲線與方程的理解.重點難點:掌握橢圓的簡
2025-11-10 17:30
【摘要】拋物線的幾何性質(zhì)前面我們已學(xué)過橢圓與雙曲線的幾何性質(zhì),它們都是通過標(biāo)準(zhǔn)方程的形式研究的,現(xiàn)在請大家想想拋物線的標(biāo)準(zhǔn)方程、圖形、焦點及準(zhǔn)線是什么?一、復(fù)習(xí)回顧:圖形方程焦點準(zhǔn)線lFyxOlFyxOlFyxO
2025-11-09 08:56
【摘要】拋物線的幾何性質(zhì)(二)一、基礎(chǔ)過關(guān)1.已知拋物線y2=2px(p0),過其焦點且斜率為1的直線交拋物線于A、B兩點,若線段AB的中點的縱坐標(biāo)為2,則該拋物線的準(zhǔn)線方程為()A.x=1B.x=-1C.x=2D.x=-22.已知拋物線y2=2px(p0
2025-11-10 10:30
【摘要】第2課時橢圓的簡單性質(zhì)a,b,c之間的關(guān)系.,并能利用簡單幾何性質(zhì)求橢圓的標(biāo)準(zhǔn)方程.,討論研究其幾何性質(zhì),使學(xué)生初步嘗試?yán)脵E圓的標(biāo)準(zhǔn)方程來研究橢圓的幾何性質(zhì)的基本方法,加深對曲線與方程的理解,同時提高分析問題和解決問題的能力.1998年12月19日,太原衛(wèi)星發(fā)射中心為摩托羅拉公司(美國)
2025-11-10 20:36
【摘要】拋物線的幾何性質(zhì)(一)一、基礎(chǔ)過關(guān)1.設(shè)點A為拋物線y2=4x上一點,點B(1,0),且|AB|=1,則A的橫坐標(biāo)的值為()A.-2B.0C.-2或0D.-2或22.以x軸為對稱軸的拋物線的通徑(過焦點且與x軸垂直的弦)長為8,若拋物線的頂點在坐標(biāo)原點,則其方程為
【摘要】圓錐曲線的統(tǒng)一定義江蘇省運河中學(xué)高二備課組2、雙曲線的定義:平面內(nèi)到兩定點F1、F2距離之差的絕對值等于常數(shù)2a(2a|F1F2|)的點的軌跡表達式||PF1|-|PF2||=2a(2a|F1F2|)3、拋物線的定義:平面內(nèi)到定點F的距離和到定直線的距離相等的點的軌跡表達式|PF|=
2025-11-08 23:32
【摘要】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)橢圓的幾何性質(zhì)課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標(biāo)是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標(biāo)為(0,1).
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第2章《圓錐曲線與方程》關(guān)于雙曲線的離心率的問題導(dǎo)學(xué)案蘇教版選修1-11、設(shè)雙曲線的一個焦點F,虛軸的一個端點B,如果直線FB與雙曲線的一條漸近線垂直則此雙曲線的離心率為2、過雙曲線)0,(12222???babyax的一個焦點為F作一條漸近線的垂線,垂足為
2025-11-10 17:31
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)瞬時變化率(曲線上一點處的切線)導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)任務(wù)】1.了解曲線的切線的概念.2.掌握求函數(shù)在某一點處切線的斜率.【課前預(yù)習(xí)】1、借助直尺,用割線逼近切線的方法作出下列曲線在點P處的切線:2、已知曲線2yx?上一點A(1,2
2025-11-11 00:31