【摘要】第一篇:不等式證明經(jīng)典[精選] 金牌師資,笑傲高考 2013年數(shù)學(xué)VIP講義 【例1】設(shè)a,b∈R,求證:a2+b2≥ab+a+b-1。 【例2】已知0 【例3】設(shè)A=a+d,B=b+c,a...
2024-11-08 22:00
【摘要】第一篇:利用導(dǎo)數(shù)證明不等式 利用導(dǎo)數(shù)證明不等式 例1.已知x0,求證:xln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+¥)??紤]到f(0)=0,要證不等式變?yōu)椋簒0時(shí),f(x)f...
2024-10-27 18:46
【摘要】第一篇:sos方法證明不等式 數(shù)學(xué)競(jìng)賽講座 SOS方法證明不等式(sumofsquares) S=A-B=Sa(b-c)+Sb(c-a)+Sc(a-b)30 性質(zhì)一:若Sa,Sb,Sc30,則...
2024-10-28 23:36
【摘要】第一篇:證明不等式方法探析 §1不等式的定義 用不等號(hào)將兩個(gè)解析式連結(jié)起來(lái)所成的式子。在一個(gè)式子中的數(shù)的關(guān)系,不全是等號(hào),含 sinx£1,ex>0,2x<3,5x15不等符號(hào)的式子,+2y32...
2024-11-15 06:26
【摘要】......導(dǎo)數(shù)題型一:證明不等式不等式的證明問(wèn)題是中學(xué)數(shù)學(xué)教學(xué)的一個(gè)難點(diǎn),傳統(tǒng)證明不等式的方法技巧性強(qiáng),多數(shù)學(xué)生不易想到,,這為我們處理不等式的證明問(wèn)題又提供了一條新的途徑,并且在近年高考題中使用導(dǎo)數(shù)證明不等式也時(shí)有出現(xiàn),但現(xiàn)行教材對(duì)這一問(wèn)
2025-03-25 00:40
【摘要】放縮法證明不等式一、放縮法原理 為了證明不等式,我們可以找一個(gè)或多個(gè)中間變量C作比較,即若能判定同時(shí)成立,那么顯然正確。所謂“放”即把A放大到C,再把C放大到B;反之,由B縮小經(jīng)過(guò)C而變到A,則稱為“縮”,統(tǒng)稱為放縮法。放縮是一種技巧性較強(qiáng)的不等變形,必須時(shí)刻注意放縮的跨度,做到“放不能過(guò)頭,縮不能不及”。二、常見(jiàn)的放縮法技巧?。薄⒒静坏仁?、柯西不等式、排序不等式放縮2、糖
2025-03-25 02:44
【摘要】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應(yīng)用題全部含義的一個(gè)不等的關(guān)系;(3)列:根據(jù)這個(gè)不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個(gè)所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫(xiě)出答案,出售時(shí)標(biāo)價(jià)為1200元,后來(lái)由于商品積壓,商店準(zhǔn)備打折出售但要保持利
2025-08-17 07:18
【摘要】指數(shù)不等式、對(duì)數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對(duì)數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【摘要】不等式的證明——綜合法導(dǎo)入新課1.證明().2.比較與的大小,并證明你的結(jié)論.嘗試探索,建立新知,求證例1已知證明:因?yàn)?,則所以故①利用某些已經(jīng)證明過(guò)的不等式和不等式的性質(zhì)推導(dǎo)出所要證明的不等式成立,這種證明方法通常叫做綜合法.②綜合法的思路是“由因
2025-07-26 00:13
【摘要】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時(shí)最常用的推證技巧,但經(jīng)教學(xué)實(shí)踐告訴我們,這種技巧卻是不等式證明部分的一個(gè)教學(xué)難點(diǎn)。學(xué)生在證明不等式時(shí),常因...
2024-10-28 03:46
【摘要】第一篇:證明不等式的幾種方法 證明不等式的幾種方法 黃啟泉 04數(shù)學(xué)與應(yīng)用數(shù)學(xué)1班30號(hào) 近幾年來(lái),有關(guān)不等式的證明問(wèn)題在高考、競(jìng)賽中屢見(jiàn)不鮮,由于不等式的證明綜合性強(qiáng),對(duì)學(xué)生的思維靈活性與創(chuàng)...
2024-11-03 22:04
【摘要】第一篇:不等式證明的幾種方法 不等式證明的幾種方法 劉丹華 余姚市第五職業(yè)技術(shù)學(xué)校 摘要:不等式的證明可以采用不同的方法,每種方法具有一定的適用性,并有一定的規(guī)律可循。通過(guò)對(duì)不等式證明方法和例...
2024-10-28 23:03