【摘要】數(shù)學教案-不等式的證明教學目標1.進一步熟練掌握比較法證明不等式;2.了解作商比較法證明不等式;3.提高學生解題時應變能力.教學重點比較法的應用教學難點常見解題技巧教學方法啟發(fā)引導式教學活動(一)導入新課(教師活動)教師打出字幕(復習提問),請三位同學回答問題,教師點評.(學
2024-11-24 20:56
【摘要】不等式的證明(一)【學習目標】掌握用比較法證明不等式【學法指導】比較法包括作差法和作商法兩種(1)作差法的一般步驟:作茶-變形-判斷符號(2)作商法的一般步驟:作商-變形-與比較大小【知識拓展】作差法中常用的變形手段是分解因式和配方等變形,前者將差化為積,后者將差化為一個完全平方或幾個完全平方式的和,也可二者并用,作商法常用于指數(shù)式的不等式的證明或比較大小
2025-08-17 10:29
【摘要】第一篇:不等式的證明方法探究 不等式的證明方法探究 不等式的證明是高中數(shù)學的一個難點,題型較多,涉及的知識面多,證明方法靈活,本文通過一些實例,歸納總結(jié)了證明不等式時常用的方法和技巧。 1.比較...
2024-10-28 23:37
【摘要】不等式的證明(二)高三備課組反證法:從否定結(jié)論出發(fā),經(jīng)過邏輯推理,導出矛盾,證實結(jié)論的否定是錯誤的,從而肯定原結(jié)論是正確的證明方法。換元法:換元法是指結(jié)構(gòu)較為復雜、量與量之間關(guān)系不很明了的命題,通過恰當引入新變量,代換原題中的部分式子,簡化原有結(jié)構(gòu),使其轉(zhuǎn)化為便于研究的形式。用換元法證明不等式時一定要注意新元的約
2025-07-24 02:36
【摘要】第一篇:基本不等式的證明 重要不等式及其應用教案 教學目的 (1)使學生掌握基本不等式a2+b2≥2ab(a、b∈R,當且僅當a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【摘要】河南師范大學本科畢業(yè)論文重慶師范大學本科畢業(yè)論文 學號:20080511757用高等數(shù)學知識求函數(shù)極限的探究學院名稱:數(shù)學學院專業(yè)名稱:數(shù)學與應用數(shù)學年級班別:2008級4班姓名:朱興杭指導教師:張
2025-08-21 15:17
【摘要】精品資源證明不等式的幾種常用方法證明不等式除了教材中介紹的三種常用方法,即比較法、綜合法和分析法外,在不等式證明中,不僅要用比較法、綜合法和分析法,根據(jù)有些不等式的結(jié)構(gòu),恰當?shù)剡\用反證法、換元法或放縮法還可以化難為易.下面幾種方法在證明不等式時也經(jīng)常使用.一、反證法如果從正面直接證明,有些問題確實相當困難,容易陷入多個元素的重圍之中,而難以自拔,此時可考慮用間接法予以證明,反證法
2025-04-08 04:10
【摘要】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有...
2024-10-28 23:16
【摘要】第一篇:構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對數(shù)(嚴格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46
【摘要】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【摘要】第一篇:不等式證明1 本資料從網(wǎng)上收集整理 難點18不等式的證明策略 不等式的證明,方法靈活多樣,,常滲透不等式證明的內(nèi)容,純不等式的證明,歷來是高中數(shù)學中的一個難點,本難點著重培養(yǎng)考生數(shù)學式的...
2024-11-08 22:00
【摘要】第一篇:排序不等式及證明 四、排序不等式 【】 (一)概念9:設有兩組實數(shù) a1,a2,×××,an(1)b1,b2,×××,bn(2)滿足 a1£a2£×××£an(3)b1£b2£×××...
2024-11-06 03:16
【摘要】第一篇:單調(diào)性證明不等式 單調(diào)性證明不等式 x證明e≥x+:記K(x)=e-x-1,則K′(x)=e-1,當x∈(0,1)時,K′(x)>0,因此K(x) 在[0,1]上是增函數(shù),故K(x)≥K...
2024-10-30 23:20
【摘要】不等式證明方法(五)判別式法、構(gòu)造法、逆代法一、判別法通過對所證不等式的觀察、分析,構(gòu)造出二次方程,證明中借助于二次方程的判別式,從而使不等式得證。.320,,:,2,,,,:12222azyxazyxazyxRzyx且不大于均不小于求證且已知例???????044)(44:2)(:2222222?????
2025-08-23 13:47
【摘要】第一篇:賦值法證明不等式 賦值法證明不等式的有關(guān)問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當0 222a(b-a)...
2024-10-29 06:45