【摘要】橢圓及其標(biāo)準(zhǔn)方程同步練習(xí)一,選擇題:1.方程Ax2+By2=C表示橢圓的條件是()(A)A,B同號(hào)且A≠B(B)A,B同號(hào)且C與異號(hào)(C)A,B,C同號(hào)且A≠B(D)不可能表示橢圓2.已知橢圓方程為221499xy??中,F(xiàn)1,F2分別為它的兩個(gè)焦點(diǎn),則下列
2024-12-05 06:35
【摘要】橢圓的幾何性質(zhì)(一)一、基礎(chǔ)過(guò)關(guān)1.已知點(diǎn)(3,2)在橢圓x2a2+y2b2=1上,則()A.點(diǎn)(-3,-2)不在橢圓上B.點(diǎn)(3,-2)不在橢圓上C.點(diǎn)(-3,2)在橢圓上D.無(wú)法判斷點(diǎn)(-3,-2)、(3,-2)、(-3,2)是否在橢圓上2
2024-12-03 11:30
【摘要】橢圓的幾何性質(zhì)(二)一、基礎(chǔ)過(guò)關(guān)1.橢圓x2+my2=1的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則m等于()B.2C.42.已知橢圓x24+y2=1的焦點(diǎn)為F1、F2,點(diǎn)M在該橢圓上,且MF1→·MF2→=0,則點(diǎn)M到y(tǒng)軸的距離
【摘要】一、課前練習(xí):1.橢圓x2+8y2=1的短軸的端點(diǎn)坐標(biāo)是()A.(0,-42)、(0,42)B.(-1,0)、(1,0)C.(22,0)、(-22,0)D.(0,22)、(0,-22)
2024-12-03 04:57
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用yxoQPQQ)(xfy?Tyxo)(xfy?P相交再來(lái)一次直線PQ的斜率為xyxxxyyyxxyykPQPQPQ?????????????0000)()(PQ無(wú)限靠近切線PTxykk
2024-11-17 20:11
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(2)孫學(xué)軍aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0復(fù)習(xí):函數(shù)單調(diào)性與導(dǎo)數(shù)關(guān)系如果在某個(gè)區(qū)間內(nèi)恒有,則為常數(shù).0)(??xf)(xf設(shè)函數(shù)y=f(x)在
2024-11-18 15:25
【摘要】一、選擇題:1.已知點(diǎn))0,4(1?F和)0,4(2F,曲線上的動(dòng)點(diǎn)P到1F、2F的距離之差為6,則曲線方程為()A.17922??yxB.)0(17922???yxyC.17922??yx或17922??xyD.)0(17922???xyx
2025-11-07 00:54
【摘要】求曲線的方程oyxoyx復(fù)習(xí).答:一般地,在直角坐標(biāo)系中,如果某曲線C上的點(diǎn)與一個(gè)二元方程F(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線C上的點(diǎn)的坐標(biāo)都是方程F(x,y)=0的解,(2)以方程F(x,y)=0的解為坐標(biāo)的點(diǎn)都是曲線C上的點(diǎn)
2024-11-18 01:22
【摘要】事例:主人邀請(qǐng)張三、李四、王五三個(gè)人吃飯聊天,時(shí)間到了,只有張三和李四兩人準(zhǔn)時(shí)趕到,王五打來(lái)電話說(shuō):“臨時(shí)有急事,不能來(lái)了?!敝魅寺?tīng)了隨口說(shuō)了句:“你看看,該來(lái)的沒(méi)有來(lái)。”張三聽(tīng)了,臉色一沉,起來(lái)一聲不吭地走了;主人愣了片刻,又道:“哎,不該走的又走了。”李四聽(tīng)了大怒,拂袖而去。你能用邏輯學(xué)原理解釋這兩人離去的原因嗎?這就是今天我們來(lái)學(xué)習(xí)常
2024-11-18 12:16
【摘要】§雙曲線雙曲線及其標(biāo)準(zhǔn)方程一、基礎(chǔ)過(guò)關(guān)1.若方程y24-x2m+1=1表示雙曲線,則實(shí)數(shù)m的取值范圍是()A.-1-1C.m3D.m-12.雙曲線5x2+ky2=5的一個(gè)焦點(diǎn)是(6,0),
2024-11-19 10:30
【摘要】雙曲線及其標(biāo)準(zhǔn)方程(1)復(fù)習(xí)與問(wèn)題1,橢圓的第一定義是什么?平面內(nèi)與兩定點(diǎn)F1,F(xiàn)2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓。F1F2MM思考到平面上兩定點(diǎn)F1,F(xiàn)2的距離之差(小于|F1F2|)為非零常數(shù)的點(diǎn)的軌跡是什么?
2025-01-14 07:30
【摘要】圓錐曲線與方程第二章§3雙曲線雙曲線及其標(biāo)準(zhǔn)方程第二章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),會(huì)推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程.2.會(huì)用待定系數(shù)法求雙曲線的標(biāo)準(zhǔn)方程.類比橢圓的定義我們可以給出雙曲線的定義在平面內(nèi)到兩個(gè)定點(diǎn)F1、F2距離之_____的絕對(duì)值等
2025-11-07 23:24
【摘要】橢圓的簡(jiǎn)單幾何性質(zhì)212..??.,.小、對(duì)稱性和位置等包括橢圓的形狀、大程研究它的幾何性質(zhì)方下面再利用橢圓的標(biāo)準(zhǔn)橢圓的標(biāo)準(zhǔn)方程立了建出發(fā)幾何特征上面從橢圓的定義?????????.來(lái)研究橢圓的幾何性質(zhì)我們用橢圓的標(biāo)準(zhǔn)方程1012222babyax.,.,幾何性質(zhì)其特性等來(lái)研究它
2024-11-18 15:26
【摘要】橢圓單元練習(xí)卷一、選擇題:1.已知橢圓1162522??yx上的一點(diǎn)P,到橢圓一個(gè)焦點(diǎn)的距離為3,則P到另一焦點(diǎn)距離為()A.2B.3C.5D.72.中心在原點(diǎn),焦點(diǎn)在橫軸上,長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,則橢圓方程是()A.22143xy??B.2
2025-11-06 13:24
【摘要】橢圓的簡(jiǎn)單幾何性質(zhì)(三)直線與圓有那些位置關(guān)系?如何判斷直線與圓的位置關(guān)系?提問(wèn):直線與橢圓有那些位置關(guān)系?如何判斷直線與橢圓的位置關(guān)系?探究一當(dāng)m取何值時(shí),直線l:y=x+m與橢圓C:9x2+16y2=144相離、相切、相交?該點(diǎn)的坐標(biāo)。最小距離是多少?并求,到直線的距離最?。繂?wèn)橢圓上是否存在一