【摘要】復習:共線向量基本定理:向量與向量共線當且僅當有唯一一個實數(shù)使得(0)aa?b?ab??abbb0??0??已知平行四邊形ABCD中,M,N分別是BC,DC的中點且,用表
2024-11-17 12:03
【摘要】第一頁,編輯于星期六:點三十三分。,2.3.4平面向量共線的坐標表示,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十三分。,第四頁,編輯于星期六:點...
2024-10-22 18:49
【摘要】課題平面向量基本定理教學目標知識與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當一組基底選定后,會用這組基底來表示其他向量情感態(tài)度價值觀啟發(fā)引導,講練結(jié)合重點會應用平面向量基本定理解決有關平面向量的綜合問題難點同上教學設
2024-11-19 20:38
【摘要】平面向量應用舉例命題方向1向量在平面幾何中的應用例1求證:直徑所對的圓周角為直角.[分析]本題實質(zhì)就是證明AB→2BC→=0.[證明]設AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【摘要】"【志鴻全優(yōu)設計】2021-2021學年高中數(shù)學平面向量線性運算的坐標表示課后訓練北師大版必修4"1.已知a=(1,1),b=(1,-1),則向量1322?ab等于().A.(-2,-1)B.(-2,1)C.(-1,0)D.(-1,2)2.若AB
2024-12-03 03:14
【摘要】復習1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
【摘要】§平面向量的數(shù)量積【學習目標、細解考綱】的意義;體會數(shù)量積與投影的關系。。,可以處理有關長度、角度和垂直問題?!局R梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-02 08:37
【摘要】【優(yōu)化指導】2021年高中數(shù)學弧度制學業(yè)達標測試新人教A版必修41.2弧度的角所在的象限是()A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限解析:∵π2<2<π,∴2弧度的角是第二象限角.答案:B2.圓的半徑變?yōu)樵瓉淼?倍,而弧長也增加到原來的2倍,則()A.扇形
2024-12-09 03:48
【摘要】永春三中王門鋅平面向量數(shù)量積的坐標表示1、向量加法三角形法則a+b=(x1+x2,y1+y2)2、向量減法三角形法則a–b=(x1–x2,y1–y2)3、實數(shù)與向量的積
2024-11-10 03:15
【摘要】平面向量基本定理考查知識點及角度難易度及題號基礎中檔稍難基底及用基底表示向量1、36、8、9向量夾角問題2、4綜合問題57、10111.已知e1和e2是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是()A.e1和e1+e2B.e
2024-11-19 19:36
【摘要】陜西省榆林育才中學高中數(shù)學第2章《平面向量》10平面向量數(shù)量積的坐標表示導學案北師大版必修4使用說明96頁到第97頁內(nèi)容,完成預習引導的全部內(nèi)容.,大膽展示,充分發(fā)揮學習小組的高效作用,完成合作探究部分.學習目標1.掌握數(shù)量積的坐標表達式,會進行平面向量數(shù)量積的運算.2.理解掌握向量的模、夾角等公式;
2024-11-19 23:19
【摘要】平面向量基本定理1.設O點是平行四邊形ABCD兩對角線的交點,下列向量組中可作為這個平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個向量
【摘要】關于《平面向量基本定理》的課后反思當前,新課程的改革與素質(zhì)教育工作已全面展開,它對教育、教學不斷提出更新、更高的要求,而課堂教學是教育教學的主陣地,那種以老師講解為主,使學生常常處于消極、被動、受壓抑的狀態(tài),既不能充分地調(diào)動學生的主動性、積極性,又不能很好地培養(yǎng)學生的各方面能力的傳統(tǒng)灌輸教學法與新課程的改革理念及“以學生為本”的教學思想已是格格不入。所以課堂教學
【摘要】平面向量應用舉例考查知識點及角度難易度及題號基礎中檔稍難向量在物理中的應用1、3、59向量在幾何中的應用6、7、10綜合運用2、48111.若向量OF1→=(1,1),OF2→=(-3,-2)分別表示兩個力F1,F(xiàn)2,則|F1+F2|為()A.10
【摘要】關于《平面向量基本定理》的效果分析一、效果總評本節(jié)課運用了“合作探究、分層推進教學法”,使學生在個人自主學習、小組合作探究、全班互相交流、教師點評總結(jié)的交互推動下,主動學習,積極參與,全面合作,廣泛交流。教師營造了民主、平等、互動、開放的學習、交流氛圍,較好地發(fā)揮了促進者、指導者和合作者的作用,引領學生通過對各類有層次的問題的思考、探究、交流、解