【正文】
的字母,相同字母的指數(shù)之差作為商式中對應字母的指數(shù),只在被除式中含有的字母指數(shù)不變,(1)(2)題對照法則進行,第(3)(4)題先把(2a+b)看作一個整體 (一個字母)相除,:解: 1.( x y )(3 x y) 2.(10a b c )(5a bc)=( 3)x y =(105)a b c = y =2ab c 3.(2x y) (7xy )(14 x y ) 4.(2a+b) (2a+b) =8x y (7xy )(14 x y ) =(2a+b) =56x y (14 x y ) =(2a+b) =4x y =4a +4ab+b三、隨堂練習P40 1學生活動:讓四名同學到黑板板演,其余同學在練習本上計算,同伴可交流,師生共同訂正.四、小結(jié):。針對這幾種結(jié)果都將a=1代入計算,得出①②都是錯誤的,但③的做法是否一定正確呢?怎么驗證?活動目的:在很多學生的頭腦中,認為兩數(shù)和的完全平方與兩數(shù)的平方和等同,即:(a+2)2=a2+22,如果不將這種定式思維_就很難建立起一個正確的概念。收獲3:感受到數(shù)形結(jié)合的數(shù)學思想在數(shù)學中的作用.活動目的:通過對一堂課的歸納與總結(jié),鞏固學生對完全平方公式的認識,體會數(shù)學思想的精妙.第十一環(huán)節(jié):布置作業(yè):完全平方公式教案15教學目標使學生理解完全平方公式的意義,弄清完全平方公式的形式和特點。452與4(5+2):(1)4+5+2=4+(5+2)(2)452=4(5+2)左邊沒括號,右邊有括號,也就是添了括號,?同學們可不可以總結(jié)出添括號法則來呢? 添括號其實就是把去括號反過來。師生行為 的思想方法:特例—歸納—猜想—驗證一用數(shù)學符號表示. 的設置是由淺入深,讓 每個學生感到學有所成,感,親身 ,讓學生掌握。練習:第88頁練一練第2題擴展資料:完全平方公式教案一、復習舊知探究,計算下列各式,你能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2 =(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.二、探究新知:(a+b)2 和(a-b)2 ;并說明發(fā)現(xiàn)的規(guī)律。③(n+1)2–n2活動目的:通過學生的反饋練習,使教師能全面了解學生對完全平方公式的理解是否到位,完全平方公式的應用是否得當,以便教師能及時地進行查缺補漏.第九環(huán)節(jié):學生PK活動內(nèi)容:每個學生各出五道完全平方公式的計算題給自己的同桌解答,比一比誰的準確性率高,速度快.活動目的:活躍課堂氣氛,激起學生的好勝心,進一步鞏固學生對完全平方公式的理解與應用.第十環(huán)節(jié):學生反思活動內(nèi)容:通過今天這堂課的學習,你有哪些收獲?收獲1:認識了完全平方公式,并能簡單應用。教學難點:消除學生頭腦中的前概念,避免形成“相異構(gòu)想”。(4)中間項是等號左邊兩項乘積的2倍。[學生回答]總結(jié)完全平方公式的語言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。,使學生感受科學的嚴謹,啟迪學生的數(shù)學思維。嘗試用自己的語言敘述完全平方公式:完全平方公式的幾何意義:閱讀課本64頁,完成填空。即∠1+∠2=90176。:在解題之前應注意觀察思考,選擇不同的方法會有不同的效果,要學會優(yōu)化選擇。(x—2y)2等于;答案:x2—8xy+4y2解析:解答:(x—2y)2=x2—8xy+4y2分析:根據(jù)完全平方公式與積的乘方法則可完成此題。四、再識完全平方公式活動內(nèi)容:例1用完全平方公式計算:(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。二、情境引入活動內(nèi)容:提出問題:一塊邊長為a米的正方形實驗田,由于效益比較高,所以要擴大農(nóng)田,將其邊長增加b米,形成四塊實驗田,以種植不同的新品種(如圖)。體會公式的發(fā)現(xiàn)和推導過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會運用公式進行簡單的計算。⑥ (4x5y)2 =______________。(3)三項系數(shù)的特點(特別是符號的特點)。(二)知識與技能:經(jīng)歷從具體情境中抽象出符號的過程,認識有理數(shù)、實數(shù)、代數(shù)式;掌握必要的運算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運用代數(shù)式、不等式、函數(shù)等進行描述。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。利用完全平方公式進行多項式的因式分解是在學生已經(jīng)學習了提取公因式法及利用平方差公式分解因式的基礎上進行的,因此在教學設計中,重點放在判斷一個多項式是否為完全平方式上,采取啟發(fā)式的教學方法,引導學生積極思考問題,從中培養(yǎng)學生的思維品質(zhì)。(1)(a+4)2; (2)(1-2t)2;(3)(m-7) 2; (4)(y+12)2。五、作業(yè)把下列各式分解因式:1。(5)是完全平方式,1-a+a2/4=(1-a2)2。把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2。45x2因為缺第三部分。3,所以x2+6x+9=(x+3) 。這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。2。使學生會分析和判斷一個多項式是否為完全平方式,初步掌握運用完全平方式把多項式分解因式的方法;2。 (2)(x-1)2;(3)(a+b)2。三、課堂練習改錯練習例題講解(總結(jié)利用完全平方公式計算的步驟)第一步選擇公式,明確是哪兩項和(或差)的平方;第二步準確代入公式;第三步化簡。情感態(tài)度與價值觀對學生觀察能力、概括能力、語言表述能力的培養(yǎng),以及數(shù)學思想的滲透。正文:完全平方公式教案完全平方公式教案1一、教材分析本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學八年級上冊第十四章的內(nèi)容。過程與方法經(jīng)歷探索完全平方公式的過程,進一步發(fā)展符號感和推理能力。完全平方公式的推導利用多項式與多項式的乘法法則和幾何法推導完全平方(和)公式附:有簡單的填空練習利用多項式乘法則和換元法推導完全平方 (差)公式(a+b)2=a2+2ab+b2(ab)2=a22ab+b2二、總結(jié)完全平方公式的特點介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。完全平方公式教案21.能根據(jù)多項式的乘法推導出完全平方公式;(重點)2.理解并掌握完全平方公式,并能進行計算.(重點、難點)一、情境導入計算:(1)(x+1)2。完全平方公式教案3教學目標1。我們學過的因式分解的方法有提取公因式法及運用平方差公式法。二、新課和討論運用平方差公式把多項式因式分解的思路一樣,把完全平方公式反過來,就得到a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2。x(4)不是完全平方式。解 25x4+10x2+1=(5x2)2+2解法2 先提出 ,則1- m+ = (16-8m+m2)= (42-23。(4)是完全平方式,9m2+12m+4=(3m+2) 2。在選用完全平方公式時,關(guān)鍵是看多項式中的第二項的符號,如果是正號,則用公式a2+2ab+b2=(a+b) 2;如果是負號,則用公式a2-2ab+b2=(a-b) 2。答案:1。課堂教學設計說明1。通過學生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設與猜想,并通過多次的`檢驗,得出正確的結(jié)論。會推導完全平方公式,并能運用公式進行簡單的計算。(2)結(jié)果的項數(shù)特點。⑤ (2x+3y)2 =____________。(ab)2=a22ab+b2完全平方公式教案5運用乘法公式計算:(l) (2)(3) (4)學生活動:采取比賽的方式把學生分成四組,每組完成一題,看哪一組完成得快而且準確,每組各派一個學生板演本組題目.【教法說明】這樣做的目的是訓練學生的快速反應能力及綜合運用知識的能力,同時也激發(fā)學生的學習興趣,活躍課堂氣氛.(四)總結(jié)、擴展這節(jié)課我們學習了乘法公式中的完全平方公式.引導學生舉例說明公式的結(jié)構(gòu)特征,公式中字母含義和運用公式時應該注意的問題.八、布置作業(yè)完全平方公式教案6教學目標:經(jīng)歷探索完全平方公式的過程,并從完全平方公式的推導過程中,培養(yǎng)學生觀察、發(fā)現(xiàn)、歸納、概括、猜想等探究創(chuàng)新能力,發(fā)展邏輯推理能力和有條理的表達能力。應用平方差公式的注意事項:弄清在什么情況下才能使用平方差公式。語言描述:兩數(shù)和(或差)的平方,等于這兩數(shù)的平方和加上(或減去)這兩數(shù)積的兩倍?!?完全平方公式》課時練習(5—x2)2等于;答案:25—10x2+x4解析:解答:(5—x2)2=25—10x2+x4分析:根據(jù)完全平方公式與冪的乘方法則可完成此題。(3).已知,求的值回顧小結(jié):在做題過程中一定要注意符號問題和正確認識a、b表示的意義,它們可以是數(shù)、也可以是單項式,還可以是多項式,所以要記得添括號。OE平分∠AOB,OF平分∠BOC.求證:OE⊥OF.分析:要證明OE⊥OF,只要證明∠EOF=90176。學習過程:一、學習準備利用多項式乘以多項式計算:(a+b)2 (ab)2這兩個特殊形式的多項式乘法結(jié)果稱為完全平方公式。使學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。教師是學生學習的組織者、促進者、合作者:本節(jié)的教學過程,要為學生的動手實踐,自主探索與合作交流提供機會,搭建平臺;尊重和自己意見不一致的學生,贊賞每一位學生的結(jié)論和對自己的超越,尊重學生的個人感受和獨特見解;幫助學生發(fā)現(xiàn)他們所學東西的個人意義和社會價值,通過恰當?shù)慕虒W方式引導學生學會自我調(diào)適,自我選擇。(4)三項與原多項式中兩個單項式的關(guān)系。(3)中間項的符號由等號左邊的兩項符號是否相同決定。完全平方公式的應用。②。運用這些公式把一個多項式分解因式的方法叫做運用公式法。.學生分組討論,最后總結(jié)。教學程序及教學內(nèi)容學生分組討論,合作交流,歸納完全平方公式的特征。使學生知道把完全平方公式反過來就可以得到相應的因式分解。這一環(huán)節(jié)的目的就是讓學生的這種錯誤或其它錯誤充分暴露出來,并讓學生充分認識到自己原有的定式思維是錯誤的,為下一步構(gòu)建