【摘要】及坐標(biāo)表示(第2課時)學(xué)習(xí)目標(biāo):(3)會根據(jù)向量的坐標(biāo),判斷向量是否共線.(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運算;兩個非零向量平行(共線)的充要條件????1122,,,(0)axybxyb???設(shè)當(dāng)且僅當(dāng)存在實數(shù),使?ba??//ab
2024-11-18 08:49
【摘要】1.三角函數(shù)的誘導(dǎo)公式設(shè)0°≤α≤90°,對于任意一個0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當(dāng)β∈[0°,90°],180°-α,當(dāng)β∈[90°,180°],
2024-12-05 10:17
【摘要】課題:向量的數(shù)乘(1)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量數(shù)乘的含義,掌握向量數(shù)乘的運算律;2、理解數(shù)乘的運算律與實數(shù)乘法的運算律的區(qū)別與聯(lián)系?!菊n前預(yù)習(xí)】1、質(zhì)點從點O出發(fā)做勻速直線運動,若經(jīng)過s1的位移對應(yīng)的向量用a?表示,那么在同方
2024-12-05 00:28
【摘要】向量的應(yīng)用(一)一、填空題1.在△ABC中,已知A(4,1)、B(7,5)、C(-4,7),則BC邊的中線AD的長是________.2.過點(1,2)且與直線3x-y+1=0垂直的直線的方程是____________.3.已知直線l1:3x+4y-12=0,l2:7x+y-28=0,則直線l1與l
2024-12-05 03:25
【摘要】向量的應(yīng)用(二)一、填空題1.一質(zhì)點受到平面上的三個力F1,F(xiàn)2,F(xiàn)3(單位:牛頓)的作用而處于平衡狀態(tài),已知F1,F(xiàn)2成90°角,且F1,F(xiàn)2的大小分別為2和4,則F3的大小為________牛頓.2.用力F推動一物體水平運動sm,設(shè)F與水平面的夾角為θ,則對物體所做的功為________.3
【摘要】3.3幾個三角恒等式變換是數(shù)學(xué)的重要工具,也是數(shù)學(xué)學(xué)習(xí)的主要對象之一,三角主要有以下三個基本的恒等變換:(1)代換;(2)公式的逆向變換和多向變換;(3)引入輔助角的變換.前面已利用誘導(dǎo)公式進(jìn)行過簡易的恒等變換,本節(jié)中將綜合運用和(差)角公式、倍角公式進(jìn)行更加豐富的三角恒等變換.1.sin2α2=_______
2024-12-05 03:24
【摘要】向量專項練習(xí)參考答案一、選擇題1.(文)(2014·鄭州月考)設(shè)向量a=(m,1),b=(1,m),如果a與b共線且方向相反,則m的值為( )A.-1 B.1C.-2 D.2[答案] A[解析] 設(shè)a=λb(λ0),即m=λ且1==±1,由于λ0,∴m=-1.[點評] ,若a=(x1,y1),b=(x1,y2),則a
2025-04-04 05:12
【摘要】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個向量的起點指向最后一個向量的終點.溫故知新baAaaaaaaaabbbB
2024-11-18 12:10
【摘要】向量的減法1、向量加法的三角形法則baOaaaaaaaabbbbbbbBbaA注意:a+b各向量“首尾相連”,和向量由第一個向量的起點指向最后一個向量的終點.溫故知新baAaaaaaaaabbb
【摘要】1.3三角函數(shù)的圖象和性質(zhì)1.三角函數(shù)的周期性情景:自然界中存在著許多周而復(fù)始的現(xiàn)象,如地球的自轉(zhuǎn)和公轉(zhuǎn),物理學(xué)中的單擺運動和彈簧振動,圓周運動等.從正弦函數(shù)、余弦函數(shù)的定義可知,角α的終邊每轉(zhuǎn)一周又會與原來的位置重合,故sinα,cosα的值也具有周而復(fù)始的變化規(guī)律.思考:正弦函數(shù)、余弦函數(shù)及正切函數(shù)它們都
【摘要】1.同角三角函數(shù)關(guān)系已知sinα-cosα=-55,180°<α<270°,你能求出tanα的值嗎?你能化簡sinθ-cosθtanθ-1嗎???為此,我們有必要研究同角三角函數(shù)的關(guān)系.1.同角三角函數(shù)的平方關(guān)系是________________,使此式成立
【摘要】向量的數(shù)量積(三)一、填空題1.已知向量a=(2,1),b=(-1,k),a2(2a-b)=0,則k=________.2.已知a=(-3,2),b=(-1,0),向量λa+b與a-2b垂直,則實數(shù)λ的值為________.3.平面向量a與b的夾角為60°,a=(2,
2024-12-05 10:15
【摘要】向量的數(shù)量積(一)一、填空題1.已知|a|=3,|b|=4,且a與b的夾角θ=150°,則a·b=________.2.已知|a|=9,|b|=62,a·b=-54,則a與b的夾角θ為________.3.|a|=2,|b|=4,向量a與向量b的夾角為120&
【摘要】第一篇:高中數(shù)學(xué)新人教A版必修1 §2.2.2向量減法運算及其幾何意義 教學(xué)目標(biāo)1.通過探究活動,使學(xué)生掌握向量減法概念,理解兩個向量的減法就是轉(zhuǎn)化為加法來進(jìn)行,掌握相反向量. 2.啟發(fā)學(xué)生能夠...
2024-11-09 12:32
【摘要】課題:向量的概念及表示班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、了解向量的概念,會用字母表示向量,理解向量的幾何表示。2、理解零向量、單位向量、平行向量、相等向量、共線向量,相反向量的概念。【課前預(yù)習(xí)】問題1、位移和距離兩個量有什么不同?問題2、舉例說明只有
2024-11-20 01:06