【摘要】全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長線上一點(diǎn),點(diǎn)在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-23 18:30
【摘要】第一篇:全等三角形證明寫理由 全等三角形證明 1.已知:AD平分∠BAC,AC=AB+BD,求證:∠B=2∠C 證明:延長AB到,使AE=,連接DE ∵AD平分∠BAC ∴∠EAD=∠CAD...
2024-10-23 07:20
【摘要】......全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-23 03:58
【摘要】第一篇:全等三角形定義與證明 全等三角形 能夠完全重合的兩個圖形叫做全等形。 能夠完全重合的兩個三角形叫做全等三角形。 把兩個全等的三角形重合到一起,重合的頂點(diǎn)叫做對應(yīng)頂點(diǎn),重合的邊叫做對應(yīng)邊...
2024-10-23 07:58
【摘要】第一篇:初一全等三角形證明 全等三角形1.三角形全等的判定一(SSS) 1.如圖,AB=AD,CB=CD.△ABC與△ADC全等嗎?為什么? 2.如圖,C是AB的中點(diǎn),AD=CE,CD=BE. ...
2024-10-25 06:55
【摘要】第一篇:2014三角形全等證明20題 探索三角形全等的條件練習(xí)題 1、已知AD是⊿ABC的中線,BE⊥AD,CF⊥AD,問BE=CF嗎?說明理由。 C2、已知AC=BD,AE=CF,BE=DF,...
2024-10-25 04:02
【摘要】全等三角形壓軸題組卷 一.選擇題(共9小題)1.(2015?荊門)如圖,點(diǎn)A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點(diǎn)M,P,CD交BE于點(diǎn)Q,連接PQ,BM,下面結(jié)論:①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,其中結(jié)論正確的有(
2025-03-27 00:37
【摘要】倍長中線(線段)造全等1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF分析:要求證的兩條線段AC、BF不在兩個全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。2、已知在△AB
2025-07-26 08:58
【摘要】第一篇:全等三角形的證明題綜合整理 八年級全等三角形證明題專項 :如圖,AB=CD,AE=DF,且AE?BC于E,DF?BC于F.求證:∠B=∠C :如圖,E,B,F,C四點(diǎn)在同一直線上,∠A=...
2024-10-21 17:41
【摘要】三角形全等的證明茶陵思源實驗學(xué)校段中明1、什么是全等圖形?2、全等圖形的識別的方法是什么?3、全等圖形的特征是什么?4、三角形全等有什么特征?5、如何識別兩個三角形全等?6、如何識別兩個直角三角形全等?復(fù)習(xí):知識點(diǎn)三角形全等的證題思路:????????SSSHL
2025-07-25 21:41
【摘要】第一篇:全等三角形證明為何非直角三角形 全等三角形證明為何非直角三角形 不能用ASS(角邊邊)證明 證明全等中的ASS 1)直角三角形ASS是可以的(HL) 2)非直角三角形不行A C ...
2024-10-23 07:54
【摘要】全等三角形證明題專項練習(xí)60題(有答案) 1.已知如圖,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度數(shù).∠BAC= _________?。?.已知:如圖,四邊形ABCD中,AB∥CD,AD∥BC.求證:△ABD≌△CDB. 3.如圖,點(diǎn)E在△ABC外部,點(diǎn)D在邊BC上,DE交AC于
【摘要】......全等三角形能力拔高題姓名:一、角度轉(zhuǎn)化問題1.已知:如圖,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求證:AD=AC.
【摘要】全等三角形的判定證明題訓(xùn)練考點(diǎn)提煉整理1、認(rèn)識全等圖形中的對應(yīng)關(guān)系,理解全等概念。全等三角形:能夠完全重合的兩個三角形稱為全等三角形全等符號:“≌”,讀作“全等于”2、掌握全等三角形的性質(zhì):①全等三角形的對應(yīng)邊相等。②全等三角形的對應(yīng)角相等。3、理解全等三角形的三個判定公理和一個判定定理。①角邊角公理:有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(ASA)。
2025-03-24 07:40
【摘要】全等三角形判定專題一(證明題)1、如圖,AC=AD,BC=BD,求證:AB平分∠CAD.2如圖,已知:點(diǎn)B、F、C、E在一條直線上,F(xiàn)B=CE,AC=DF.∠A=∠D=90°;求證:AB∥DE.3、如圖,已知AB=AC,AD=AE.求證:BD=CE.4如圖,在△ABC中,D是∠BAC的平分線上一點(diǎn),BD⊥AD于D
2025-03-24 07:39