【摘要】選修2-3第二章第1課時一、選擇題1.設某項試驗的成功率是失敗率的2倍,用隨機變量ξ描述一次試驗的成功次數(shù),則P(ξ=0)=()A.0B.12C.13D.23[答案]C[解析]由題意,“ξ=0”表示試驗失敗,“ξ=1”表示試驗成功,設失敗率為
2024-12-05 01:52
【摘要】【與名師對話】2021-2021學年高中數(shù)學離散型隨機變量的均值課時作業(yè)新人教A版選修2-3一、選擇題1.已知隨機變量ξ的概率分布如下表所示:ξ012P715715115且η=2ξ+3,則E(η)等于()解析:E(ξ)=0×71
2024-11-28 00:07
【摘要】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-06 16:34
【摘要】§2.3離散型隨機變量的均值與方差§2.3.1離散型隨機變量的均值教學目標:知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應用它們求相應的
2024-11-19 19:35
【摘要】§2.3.2離散型隨機變量的方差教學目標:知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應用上述公式計算有關隨機變量的方差。情感、態(tài)度與價值觀:
2024-12-05 06:38
【摘要】1.離散型隨機變量的分布列(1)離散型隨機變量的分布列若離散型隨機變量X可能取的不同值為x1,x2,…,xi,…xn,X取每一個值xi(i=1,2,…,n)的概率P(X=xi)=pi,則表基礎知識梳理Xx1x2?xi?xnP??p1p2pipn稱為離散型隨機變量
2024-11-10 00:24
【摘要】離散型隨機變量分布列及其數(shù)學期望安徽省肥西中學謝守寧考點早知道,目標早明確?概念,了解分布列對于刻畫隨機現(xiàn)象的重要性.?n次獨立重復試驗的模型,掌握二項分布,并能利用它們解決一些簡單的實際問題.?,體會模型化思想,在解決問題中的作用,感受概率在生
2025-10-03 08:22
【摘要】本文格式為Word版,下載可任意編輯 離散型隨機變量及其分布列數(shù)學教學反思 離散型隨機變量及其分布列數(shù)學教學反思 身為一名人民老師,我們的工作之一就是教學,對學到的教學新方法,我們可以記錄在...
2025-04-04 06:39
【摘要】第二章,隨機變量及其分布,第一頁,編輯于星期六:點三十五分。,2.3離散型隨機變量的均值與方差,2.3.2離散型隨機變量的方差,第二頁,編輯于星期六:點三十五分。,課前教材預案,課堂深度拓展,課末隨堂...
2024-10-22 18:57
【摘要】專業(yè)資料整理分享理科數(shù)學復習專題統(tǒng)計與概率離散型隨機變量及其分布列知識點一1、離散型隨機變量:隨著實驗結果變化而變化的變量稱為隨機變量,常用字母,X,Y表示,所有取值可以一一列出的隨機變量,稱為離散型隨機變量。2、離散型隨機變量的分布列及其性質:(
2025-04-04 05:17
【摘要】 課時作業(yè)63 離散型隨機變量及其分布列 [基礎達標] 一、選擇題 1.已知某射手射擊所得環(huán)數(shù)X的分布列如表所示. X 4 5 6 7 8 9 10 P ...
2025-04-03 02:48
【摘要】隨機變量及概率分布學習目標重點、難點1.能說出隨機變量的定義;2.能記住隨機變量的概率分布列的兩種形式;3.理解并會應用兩點分布.重點:隨機變量的概率分布列.難點:每個隨機變量的概率求法,求隨機變量的概率分布列.1.隨機變量一般地,如果隨機試驗的結果,可以用一個變量來表示,那么這樣的變量叫做隨
2024-11-19 19:15
【摘要】離散型隨機變量的均值與方差教學目標(1)進一步理解均值與方差都是隨機變量的數(shù)字特征,通過它們可以刻劃總體水平;(2)會求均值與方差,并能解決有關應用題.教學重點,難點:會求均值與方差,并能解決有關應用題.教學過程一.問題情境復習回顧:1.離散型隨機變量的均值、方差、標準差的概念和意義,以及計算公式.2.練習
2024-12-09 04:43
【摘要】選修2-3第二章第2課時一、選擇題1.已知隨機變量X的分布列為:P(X=k)=12k,k=1、2、?,則P(2<X≤4)=()A.316B.14C.116D.516[答案]A[解析]P(2<X≤4)=P(X=3)+P(X=4)=12
2024-12-05 06:40
【摘要】ξ可取-1,0,1(且ξ為離散型隨機變量)解:設黃球的個數(shù)為n,依題意知道綠球個數(shù)為2n,紅球個數(shù)為4n,盒中球的總數(shù)為7n。p10-1(2)并分別求這三種情況下的概率例1一盒中放有大小相同的紅色、綠色、黃色三種小球,已知紅球個數(shù)是綠球個數(shù)的兩倍,黃球個數(shù)是綠球的一半,現(xiàn)從該盒中隨機取出一個球,
2024-11-09 12:29