【摘要】本文格式為Word版,下載可任意編輯 初中不等式與不等式組知識點 一、不等式 不等式及其解集 1、不等式:用不等號表示大小關系的式子。 2、不等式的解:使不等式成立的未知...
2025-04-03 22:00
【摘要】解:去分母,得:5x-1<3x+3,移項,得:5x-3x<3+1,合并同類項,得:2x<4,系數(shù)化為1,得:x<2,將不等式的解集表示在數(shù)軸上如下:.1.(2018·桂林)解不等式5x-13<x+1,并把它的解集在數(shù)
2025-06-12 03:10
【摘要】中考復習準備好了嗎?陽泉市義井中學高鐵牛時刻準備著!2020年課程標準及學習目標有的放矢(課標要求)(1)方程與方程組①能夠根據(jù)具體問題中的數(shù)量關系,列出方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。②經(jīng)歷用觀察、畫圖或計算器等手段估計方程解的過程。[參A例7]
2025-11-03 02:42
【摘要】第一篇:2014年數(shù)學高考專題--用構造局部不等式法證明不等式[模版] 2014年數(shù)學高考專題--用構造局部不等式法證明不等式 有些不等式的證明,若從整體上考慮難以下手,可構造若干個結構完全相同的...
2025-10-17 22:06
【摘要】第一篇:不等式與不等式組教學目標 不等式與不等式組教學目標 篇一:不等式與不等式組復習教案 篇二:第九章不等式與不等式組單元教學計劃 第九章不等式與不等式組單元教學計劃 教學目標: 知識目...
2025-11-06 23:40
【摘要】精品資源七年級(下)數(shù)學(不等式與不等式組)一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a(chǎn)m<an2.不等式4(x2)>2(3x+5)的非負整數(shù)解的個數(shù)為()A.0個
2025-06-29 16:21
【摘要】專題三:不等式與不等式組一、填空題(共14小題,每題2分,共28分)1.“的一半與2的差不大于”所對應的不等式是.2.不等號填空:若ab0,則;;.3.當時,大于2.wWw.XkbOm4.直接寫出下列不等式(組)的解集:①;②
2025-03-24 05:47
【摘要】第二章第七課時:不等式(組)?要點、考點聚焦?課前熱身?典型例題解析?課時訓練?要點、考點聚焦.,組成這個不等式的解的集合,簡稱這個不等式的解集.:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是一次的整式不等式叫做一元一次不等式.的不等式組.的解集的
2025-10-28 12:51
【摘要】初二數(shù)學不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>4;(6)3-x-1;(7)2(x+1)3x;(8)3(x
2025-03-25 07:46
【摘要】精品資源第九章《不等式與不等式組》單元測試班級_________姓名____________(每空3分,第2題每空2分,共35分)1.x的與5的差不小于3,用不等式可表示為__________.y,則x+2___y+2,-3x___-3y,x-y___0,x+y___2y.,式子3x-5的值大于5x+3的值.,代數(shù)式x-3是非正數(shù).≤的正整
2025-06-29 16:56
【摘要】不等式與不等式組一、知識結構圖二、知識要點(一、)不等式的概念1、不等式:一般地,用不等符號(“<”“>”“≤”“≥”)表示大小關系的式子,叫做不等式,用“≠”表示不等關系的式子也是不等式。不等號主要包括:>、<、≥、≤、≠。2、不等式的解:使不等式左右兩邊成立的未知數(shù)的值,叫做不等式的解。3、不等式的解集:一個含有未知數(shù)的不等式的所有解,組
2025-06-24 19:20
【摘要】不等式專題訓練(三)班級??????姓名????????記分?????????一、選擇題:1、011??ba,則如下恒成立的不等式為:()(A)a2b2(B)abba2??(C)2bab?(D)baba???22
2025-11-03 06:24
【摘要】第2講不等式與不等式組,了解不等式的意義,探索不等式的基本性質(zhì).,并能在數(shù)軸上表示出解集;會用數(shù)軸確定由兩個一元一次不等式組成的不等式組的解集.,列出一元一次不等式,解決簡單的問題.1.(2022年貴州六盤水)不等式3x+6≥9的解集在數(shù)軸上表)B.D.示正確
2025-06-19 15:40
【摘要】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
2025-06-18 14:22