【摘要】排列組合綜合問題教學(xué)目標(biāo)通過教學(xué),學(xué)生在進(jìn)一步加深對(duì)排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學(xué)會(huì)分類討論的思想.教學(xué)重點(diǎn)與難點(diǎn)重點(diǎn):排列、組合綜合題的解法.難點(diǎn):正確的分類、分步.教學(xué)用具投影儀.教學(xué)過程設(shè)計(jì)(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問題和組
2025-03-25 02:37
【摘要】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會(huì)某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個(gè)區(qū)域,現(xiàn)有6種不同顏色的花,要求每個(gè)區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【摘要】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學(xué)排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個(gè)??例15:計(jì)劃在某畫廊展開10幅不同的畫,
2024-11-10 22:56
【摘要】從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.:從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【摘要】排列與組合一、教學(xué)目標(biāo)1、知識(shí)傳授目標(biāo):正確理解和掌握加法原理和乘法原理2、能力培養(yǎng)目標(biāo):能準(zhǔn)確地應(yīng)用它們分析和解決一些簡單的問題3、思想教育目標(biāo):發(fā)展學(xué)生的思維能力,培養(yǎng)學(xué)生分析問題和解決問題的能力二、教材分析:加法原理,乘法原理。解決方法:利用簡單的舉例得到一般的結(jié)論.:加法原理,乘法原理的區(qū)分。解決方法:運(yùn)用對(duì)比的方法比較它們的異同.三、活動(dòng)設(shè)計(jì):
2025-08-05 18:06
【摘要】第一篇:有趣的排列組合 三年級(jí)上冊(cè)《數(shù)學(xué)廣角》 有趣的排列組合教學(xué)內(nèi)容:人教版三年級(jí)上冊(cè)數(shù)學(xué)廣角 教學(xué)目標(biāo): 1、結(jié)合具體情景,通過觀察、猜測、實(shí)驗(yàn)等數(shù)學(xué)活動(dòng),能有序地找 出簡單的組合數(shù)。 ...
2024-10-25 17:55
【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。分析:(1)個(gè)位和千位有5個(gè)數(shù)字可供選擇,其余2位有四個(gè)可供選擇,由乘法原理:=240
2025-03-25 02:36
【摘要】歐洲杯是國家隊(duì)之間進(jìn)行的比賽.類似于亞洲杯,非洲杯.每四年舉辦一界.一般是在六月中旬開賽.歷經(jīng)15-20天.參賽隊(duì)為16只,主客場制問要打幾場比賽?北京一日游有北京天安門、故宮、天壇、頤和園四個(gè)項(xiàng)目,問導(dǎo)游有幾種安排方式?六位密碼鎖可以設(shè)定幾種密碼?要回答這些問題,就要要用到分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.
2025-08-05 07:17
【摘要】解排列組合的問題一般的思考過程如下:元素放進(jìn)位置(1)弄清楚要做什么事.(2)怎么做才能完要做的事.(熟悉兩個(gè)計(jì)數(shù)原理)即采取分步還是分類,或分步分類同時(shí)進(jìn)行。(3)確定每一類或每一步是有序(排列)還是無序(組合)問題。元素總數(shù)多少,取多少個(gè)元素。(4)掌握一些常用的解題策略。常用的解題策略
2025-08-15 23:54
【摘要】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2025-08-05 19:14
【摘要】相鄰元素捆綁策略例.7人站成一排,其中甲乙相鄰且丙丁相鄰,共有多少種不同的排法.甲乙丙丁由分步計(jì)數(shù)原理可得共有種不同的排法55A22A22A=480解:可先將甲乙兩元素捆綁成整體并看成一個(gè)復(fù)合元素,同時(shí)丙丁也看成一個(gè)復(fù)合元素,
2025-08-05 07:27
【摘要】;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力合問題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2024-11-09 13:22
【摘要】 排列組合專題復(fù)習(xí)及經(jīng)典例題詳解1.學(xué)習(xí)目標(biāo)掌握排列、組合問題的解題策略(1)特殊元素優(yōu)先安排的策略:(2)合理分類與準(zhǔn)確分步的策略;(3)排列、組合混合問題先選后排的策略;(4)正難則反、等價(jià)轉(zhuǎn)化的策略;(5)相鄰問題捆綁處理的策略;(6)不相鄰問題插空處理的策略.綜合運(yùn)用解題策略解決問題.:(1)知識(shí)梳理1.分類計(jì)數(shù)原理(加法原理
2025-04-17 01:31
【摘要】名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)兩個(gè)原理的區(qū)別與聯(lián)系:做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類
【摘要】排列組合排列定義???從n個(gè)不同的元素中,取r個(gè)不重復(fù)的元素,按次序排列,稱為從n個(gè)中取r個(gè)的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個(gè)數(shù)用P(n,r)表示。當(dāng)r=n時(shí)稱為全排列。一般不說可重即無重??芍嘏帕械南鄳?yīng)記號(hào)為P(n,r),P(n,r)。組合定義從n個(gè)不同元素中取r個(gè)不重復(fù)的元素組成一個(gè)子集,而不考慮其元素的順序,稱
2025-06-25 23:09