【正文】
求導(dǎo) , 得 yexyy????2)()1()(yyyexyeyexyy?????????? ② 當(dāng) 0?x 時(shí) , ,1?y 故由 ① 得 ey1)0( ???再代入 ② 得 21)0(ey ???① 整理, 得 .,0)(,)()(,)()()(22dxydttttytxxyy求且二階可導(dǎo)與其中確定由設(shè)函數(shù)?????????????)(22dxdydxddxyd ?dxdtttdtd ????????????)()(??)(1)()()()()(2 tttttt?????????????????.)( )()()()( 322tttttdxyd??????????????即例 8 解 dtdxttdtd???????????)()(??)()(ttdxdy?????例 9 設(shè) 解 ,s i nco s33?????taytax)()(txtydxdy??? )s i n(c os3c oss i n322ttatta?? tta n??22dxyd )c os()t an(3 ????tatttats i nco s3s ec22???tats in3s e c 4?求 .22dxyd 利用高階導(dǎo)數(shù)的運(yùn)算法則和已知的高階導(dǎo)數(shù)公式求高階導(dǎo)數(shù) . 則階導(dǎo)數(shù)具有和設(shè)函數(shù) ,nvu)(2)(1)(21 )()1( nnn vCuCvCuC ???)()(0)()()()2()1()()(!)1()1(!2)1()()2(kknnkknnkknnnnnvuCuvvukknnnvunnvnuvuvu???????????????????????萊布尼茲公式 : 運(yùn)算法則 例 10 .,11 )(2nyxy 求設(shè)??解 )1111(21112 ?????? xxxy?])11()11[(21 )()()( nnnxxy?????])1(!)1()1(!)1([2111 ?? ??????nnnnxnxn])1(1)1(1[2!)1(11 ?? ?????nnnxxn例 11 .,c o ss i n )(66 nyxxy 求設(shè) ??解 3232 )( c o s)( s i n xxy ??)c o sc o ss i n