freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

華師大八級上第章勾股定理單元測試(二)含答案解析(存儲版)

2025-02-13 19:37上一頁面

下一頁面
  

【正文】 Rt△ABC中,∠C=90176。=x.又∵BC=6,∴BE+EF+CF=6,即x+x+x=6,解得 x=2∴△ACD的面積是: AD?DF=xx=22=,故選:A.【點評】本題考查了勾股定理,三角形的面積以及含30度角的直角三角形.解題的難點是作出輔助線,構(gòu)建矩形和直角三角形,目的是求得△ADC的底邊AD以及該邊上的高線DF的長度. 二、填空題(共15小題)14.如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(﹣6,0)、(0,8).以點A為圓心,以AB長為半徑畫弧,交x正半軸于點C,則點C的坐標(biāo)為 (4,0)?。究键c】勾股定理;坐標(biāo)與圖形性質(zhì).【分析】首先利用勾股定理求出AB的長,進(jìn)而得到AC的長,因為OC=AC﹣AO,所以O(shè)C求出,繼而求出點C的坐標(biāo).【解答】解:∵點A,B的坐標(biāo)分別為(﹣6,0)、(0,8),∴AO=6,BO=8,∴AB==10,∵以點A為圓心,以AB長為半徑畫弧,∴AB=AC=10,∴OC=AC﹣AO=4,∵交x正半軸于點C,∴點C的坐標(biāo)為(4,0),故答案為:(4,0).【點評】本題考查了勾股定理的運用、圓的半徑處處相等的性質(zhì)以及坐標(biāo)與圖形性質(zhì),解題的關(guān)鍵是利用勾股定理求出AB的長. 15.在Rt△ABC中,CA=CB,AB=9,點D在BC邊上,連接AD,若tan∠CAD=,則BD的長為 6?。究键c】勾股定理;等腰直角三角形;銳角三角函數(shù)的定義.【分析】根據(jù)等腰直角三角形的性質(zhì)可求AC,BC的長,在Rt△ACD中,根據(jù)銳角三角函數(shù)的定義可求CD的長,BD=BC﹣CD,代入數(shù)據(jù)計算即可求解.【解答】解:如圖,∵在Rt△ABC中,CA=CB,AB=9,∴CA2+CB2=AB2,∴CA=CB=9,∵在Rt△ACD中,tan∠CAD=,∴CD=3,∴BD=BC﹣CD=9﹣3=6.故答案為:6.【點評】綜合考查了等腰直角三角形的性質(zhì),勾股定理,銳角三角函數(shù)的定義,線段的和差關(guān)系,難度不大. 16.我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”(如圖(1)).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為SSS3.若正方形EFGH的邊長為2,則S1+S2+S3= 12?。究键c】勾股定理的證明.【分析】根據(jù)八個直角三角形全等,四邊形ABCD,EFGH,MNKT是正方形,得出CG=KG,CF=DG=KF,再根據(jù)S1=(CG+DG)2,S2=GF2,S3=(KF﹣NF)2,S1+S2+S3=12得出3GF2=12.【解答】解:∵八個直角三角形全等,四邊形ABCD,EFGH,MNKT是正方形,∴CG=KG,CF=DG=KF,∴S1=(CG+DG)2=CG2+DG2+2CG?DG=GF2+2CG?DG,S2=GF2,S3=(KF﹣NF)2=KF2+NF2﹣2KF?NF,∴S1+S2+S3=GF2+2CG?DG+GF2+KF2+NF2﹣2KF?NF=3GF2=12,故答案是:12.【點評】此題主要考查了勾股定理的應(yīng)用,用到的知識點是勾股定理和正方形、全等三角形的性質(zhì),根據(jù)已知得出S1+S2+S3=3GF2=12是解題的難點. 17.如圖是“趙爽弦圖”,△ABH、△BCG、△CDF和△DAE是四個全等的直角三角形,四邊形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于 6?。究键c】勾股定理的證明.【分析】根據(jù)面積的差得出a+b的值,再利用a﹣b=2,解得a,b的值代入即可.【解答】解:∵AB=10,EF=2,∴大正方形的面積是100,小正方形的面積是4,∴四個直角三角形面積和為100﹣4=96,設(shè)AE為a,DE為b,即4ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,∵a﹣b=2,解得:a=8,b=6,∴AE=8,DE=6,∴AH=8﹣2=6.故答案為:6.【點評】此題考查勾股定理的證明,關(guān)鍵是應(yīng)用直角三角形中勾股定理的運用解得ab的值. 18.如圖,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,則AE= 3?。究键c】勾股定理;全等三角形的判定與性質(zhì);等腰三角形的性質(zhì).【分析】根據(jù)等腰三角形的性質(zhì)可知:兩腰上的高相等所以AD=
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1