【摘要】 初中三角函數(shù)基礎檢測題 山岳 得分(一)精心選一選(共36分)1、在直角三角形中,各邊都擴大2倍,則銳角A的正弦值與余弦值都()A、縮小2倍B、擴大2倍C、不變D、不能確定2、在Rt△ABC中,∠C=900,BC=4,sinA=,則AC=()A、3B、4
2025-08-05 03:34
【摘要】 初中三角函數(shù)基礎檢測題?。ㄒ唬┚倪x一選1、在直角三角形中,各邊都擴大2倍,則銳角A的正弦值與余弦值都()A、縮小2倍B、擴大2倍C、不變D、不能確定2、在Rt△ABC中,∠C=900,BC=4,sinA=,則AC=()A、3B、4C、5
2025-06-25 20:28
【摘要】4第一章三角函數(shù)(1)一、選擇題:A={第一象限角},B={銳角},C={小于90176。的角},那么A、B、C關(guān)系是()A.B=A∩CB.B∪C=CC.ACD.A=B=C2新疆源頭學子小屋特級教師王新敞htp::/02120sin等于
2025-01-11 03:58
【摘要】總題數(shù):13題第23題(2009年普通高等學校夏季招生考試數(shù)學文史類(山東卷))題目已知函數(shù)(0<φ<π)在x=π處取最小值.(1)求φ的值;(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,,,求角C.?答案本題主要考查三角函數(shù)的化簡求值及解三角形的有關(guān)問題.(1)=sinx+sinxcosφ+cosxsinφ-
2025-01-14 13:05
【摘要】1九年級數(shù)學(銳角三角函數(shù))測試題姓名:座號:滿分:110分成績:一、選擇題(本大題共10小題,每小題3分,共30分)1.??45cos45sin?的值等于()A.1B.2C.3D.213?2.三角形在正方形網(wǎng)格
2024-11-24 20:50
【摘要】數(shù)學備課大師目錄式免費主題備課平臺!選修1-1第三章 導數(shù)及其應用[課標研讀][課標要求](1)導數(shù)概念及其幾何意義?、倭私鈱?shù)概念的實際背景.?、诶斫鈱?shù)的幾何意義.(2)導數(shù)的運算①能根據(jù)導數(shù)定義,求函數(shù)的導數(shù).②能利用表1給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù).表1:常見基本初等函數(shù)的導數(shù)公式和常用導數(shù)運算
2025-06-07 13:47
【摘要】三角函數(shù)定義及誘導公式練習題1.代數(shù)式的值為()A.B.C.D.2.()A.B.C.D.3.已知角α的終邊經(jīng)過點(3a,-4a)(a0),則sinα+cosα等于()A.B.C.D.-4
2025-06-27 22:56
【摘要】三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A
2025-07-23 20:29
【摘要】2020屆高考數(shù)學復習強化雙基系列課件22《三角函數(shù)-三角函數(shù)的最值》一、高考要求、值域、單調(diào)性和它們的圖象等,求三角函數(shù)的最大值和最小值.最小值.解決.最值問題是三角中考試頻率最高的重點內(nèi)容之一,需要綜合運用三角函數(shù)概念、圖象、性質(zhì)
2024-11-09 08:51
【摘要】2020屆高考數(shù)學復習強化雙基系列課件23《三角函數(shù)-三角形中的三角函數(shù)》三角形中的有關(guān)公式:三角形三內(nèi)角之和為?,即A+B+C=?.注任意兩角和與第三個角總互補;任意兩半角和與第三個角的半角總互余;銳角三角形?三內(nèi)角都是銳角?任兩角和都是鈍角設△ABC中,角A、
2024-11-11 08:50
【摘要】第31講三角形中的三角函數(shù)、余弦定理將三角形的邊角轉(zhuǎn)化.,三角形內(nèi)三角函數(shù)的求值及三角恒等式的證明.1.△ABC中,已知sinA=2sinBcosC,sin2A=sin2B+sin2C,則三角形的形狀是()D由sin2A=s
2024-11-09 08:50
【摘要】三角函數(shù)的恒等變形與求值寶應中學高三數(shù)學文科備課組一、要點掃描?1、了解用向量的數(shù)量積推導出兩角差的余弦公式的過程。?2、能利用已知條件,正確合理地運用三角恒等變形公式進行三角函數(shù)式的化簡、求值及恒等式證明。二、課前熱身?1.若,則
2024-11-12 01:26
2025-07-24 07:31
【摘要】三角函數(shù)恒等變形及解三角形練習題一選擇題,則的值為()A.B.C.D.2.若則()A.B.C.D.3.在中,,則等于()A. B. C. D.△ABC中,,若此三角形有兩解,則b的范圍為()
2025-06-24 20:18
【摘要】初中三角函數(shù)復習練習題
2025-06-25 20:17