【摘要】湖南師大附中劉東紅?能畫出y=sinx,y=cosx,y=tanx的?圖象,了解三角函數(shù)的周期性,?理解它們在的性質(zhì).]2,0[?解析式定義域值域周期性奇偶性單調(diào)性tanyx?sinyx?co
2025-07-25 15:34
【摘要】專題調(diào)研I孫璞剛《函數(shù)與三角函數(shù)》第一章集合與常用邏輯用語專題一集合的概念及運算……??键c3集合中的創(chuàng)新問題【剖析】以集合為背景的新概念問題是高考中常見的開放探究性問題,以集合概念為背景給出新的定義,使問題變得新穎巧妙,這類問題的特點是信息“新”,意義深刻,往往具有
2025-06-07 13:53
【摘要】初三數(shù)學(xué)三角函數(shù)專題訓(xùn)練三1.(2014?安順)如圖,在Rt△ABC中,∠C=90°,∠A=30°,E為AB上一點且AE:EB=4:1,EF⊥AC于F,連接FB,則tan∠CFB的值等于( )A. B. C. D.2.(2015?大慶模擬)如圖,延長RT△ABC斜邊AB到點D,使BD=AB,連接CD,若tan∠BCD=,則tanA=( )A.
2025-08-05 02:29
【摘要】第三節(jié)三角函數(shù)的圖象與性質(zhì)考綱點擊y=sinx,y=cosx,y=tanx的圖象,了解三角函數(shù)的周期性.、余弦函數(shù)在區(qū)間[0,2π]上的性質(zhì)(如單調(diào)性、最大值和最小值以及與x軸的交點等),理解正切函數(shù)在區(qū)間內(nèi)的單調(diào)性.熱點提示考查,應(yīng)熟練掌握各個三角函數(shù)的圖象.、最值、單
2024-11-09 04:35
【摘要】1401、推理填空如圖,∠BAC=∠DAE=90°,AC=AB,AE=AD,試說明BE⊥CD.證明:∵∠BAC=∠DAE=90°(已知)即∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3(同角的余角相等)在△DAC與△EAB中.∴
2025-01-08 20:25
【摘要】1.兩角和與差的正弦、余弦、正切公式C(α-β):cos(α-β)=;C(α+β):cos(α+β)=;S(α+β):sin(α+β)=;
2024-11-10 07:32
【摘要】編者:衡南縣第五中學(xué)龍詩春643、三角函數(shù)、三角恒等變換、解三角形【考綱要求】1.任意角的概念、弧度制:①了解任意角的概念。②了解弧度制的概念,能進行弧度與角度的互化。2.三角函數(shù):①理解任意角三角函數(shù)(正弦、余弦、正切)的定義。②能利用單位圓中的三角函數(shù)線推導(dǎo)出2?±?,?±?的正弦、余
2025-01-09 10:58
【摘要】高三數(shù)學(xué)(理科)測試題(函數(shù)、導(dǎo)數(shù)、三角函數(shù))一、選擇題(本大題共12小題,每小題5分,共60分)1、A.B.(1,3]C.[-1,1]D.[-1,3)()A.B.C.D.3、()A.abcca<
2025-06-07 23:52
【摘要】龍文教育-------您值得信賴的專業(yè)化個性化輔導(dǎo)學(xué)校龍文教育個性化輔導(dǎo)授課教案教師:林晶晶學(xué)生:黃仕鑫時間:年月日段一、教學(xué)目標與重、難點分析:教學(xué)目標:1初步了解正弦、余弦、正切概念;2.能較正確地用sinA、cosA、tanA表示直角三角形中兩邊的比;3.逐
2025-08-17 00:50
【摘要】中考數(shù)學(xué)三角函數(shù)題集,需要加強的同學(xué)可以做一下!這篇文章專門提供一個三角函數(shù)的習(xí)題集,希望有興趣的同學(xué)做一下,需要答案的可以留言給我。
2025-04-04 03:00
【摘要】三角函數(shù)測試題一、選擇題1.等于()A. B. C. D.2.()?。ǎ粒 。ǎ拢 。ǎ茫 。ǎ模?.設(shè),,,則()
2025-07-24 17:38
【摘要】三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A
2025-07-23 20:29
【摘要】高考文科數(shù)學(xué)專題復(fù)習(xí)三角函數(shù)、解三角形專題一 三角函數(shù)的概念、同角三角函數(shù)的關(guān)系式及誘導(dǎo)公式A組三年高考真題(2016~2014年)1.(2015·福建,6)若sinα=-,且α為第四象限角,則tanα的值等于( )A.B.-C.D.-2.(2014·大綱全
2025-04-17 12:37
2025-07-24 07:31
【摘要】的面積是30,內(nèi)角所對邊長分別為,。(Ⅰ)求;(Ⅱ)若,求的值。設(shè)函數(shù),求函數(shù)的單調(diào)區(qū)間與極值。已知函數(shù)(Ⅰ)求的值;(Ⅱ)求的最大值和最小值設(shè)函數(shù),,,且以為最小正周期.(1)求;w_w(2)求的解析式;(3)已知,求的值.w_已知函數(shù)(I)求函數(shù)的最小正周期。(II)求函數(shù)的最大
2025-07-25 00:01