freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理教學(xué)設(shè)計工作單-免費閱讀

2025-11-11 12:01 上一頁面

下一頁面
  

【正文】 數(shù)學(xué)(必修4)》(人教版) B組第二題,我將其加工成一個具有實際意義的決策型問題);②啟發(fā)、引導(dǎo)學(xué)生提出自己關(guān)心的現(xiàn)實問題,逐步將現(xiàn)實問題轉(zhuǎn)化、抽象成過渡性數(shù)學(xué)問題,解決過渡性問題4與5時需要使用正弦定理,借此引發(fā)學(xué)生的認知沖突,揭示解斜三角形的必要性,并使學(xué)生產(chǎn)生進一步探索解決問題的動機。)AcBDabC圖 9 向量故bsinB=csinC,同理可得asinA=bsinB師:利用向量在邊上的高上的射影相等,證明了正弦定理,方法非常簡捷明了!【設(shè)計意圖】利用向量法來證明幾何問題,學(xué)生相對比較生疏,不容易馬上想出來,教師通過設(shè)計一些遞進式的問題給予適當(dāng)?shù)膯l(fā)引導(dǎo),將很難想到的方法合理分解,有利于學(xué)生理解接受。uuurr證法四:如圖8,設(shè)非零向量j與向量BC垂直。ABC\sin208。BACsin208。ACB,BE=csin208。鈍角三角形的情形以課后證明的形式,可使學(xué)生鞏固課堂的成果。生10:(通過計算)與生5的結(jié)果相同。師:這是個好主意??梢砸灾苯侨切螢樘乩?,先在直角三角形中試探一下。DAGBDv1vAGv2EC,|EG|=|DE|cos208?!驹O(shè)計意圖】將問題數(shù)學(xué)化,有助于加深學(xué)生對問題的理解,有助于培養(yǎng)學(xué)生的數(shù)學(xué)意識。生1:船從A開往B的情況如圖2,根據(jù)平行四邊形的性質(zhì)及解直角三角形的知識,可求得船在河水中的速度大小|v|及v1與v2的夾角q:|v|=|v1||v2|=|v1||v2|=35, 22BDEC53=4,22v1vFAv2圖 2sinq= 用計算器可求得q187。因上游暴發(fā)特大洪水,在洪峰到來之前,急需將碼頭A處囤積的重要物資及留守人員用船盡快轉(zhuǎn)運到正對岸的碼頭B處或其下游1km的碼頭C處,請你確定轉(zhuǎn)運方案。三、設(shè)計思想培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究是全面發(fā)展學(xué)生能力的重要前提,是高中新課程改革的主要任務(wù)。本設(shè)計以一個實際問題出發(fā)引入正弦定理并讓學(xué)生在練習(xí)3中解決這一問題,這不但使學(xué)生體會到了數(shù)學(xué)的作用,而且使學(xué)生的數(shù)學(xué)應(yīng)用意識和應(yīng)用數(shù)學(xué)解決實際問題的能力得到了進一步的提高。三、教學(xué)基本流程創(chuàng)設(shè)問題情境,引出問題:在三角形中,已知兩角以及一邊,如何求出另外一邊;結(jié)合初中學(xué)習(xí)過的直角三角形中的邊角關(guān)系,引導(dǎo)學(xué)生不斷地觀察、比較、分析,采取從特殊到一般以及合情推理的方法發(fā)現(xiàn)并證明正弦定理;分析正弦定理的特征及利用正弦定理可解的三角形的類型;應(yīng)用正弦定理解三角形。正弦定理的證明還可以運用向量法和作三角形的外接圓來證明。結(jié)束后,重點和學(xué)生一起討論幾何法,作外接圓的證法。B=45176。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。命題應(yīng)用講解書本上兩個例題:例1 在△ABC中,已知A=32176。那我們能不能得到關(guān)于邊、角關(guān)系準確量化的表示呢?歸納命題我們從特殊的三角形在如圖Rt三角形ABCa=sinA, cbc=sinB.=,asinA=bsinB又sinC=1,所以csinCasinA=bsinB=.在直角三角形中,得出這一關(guān)系。即指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實際生活中許多測量問題的工具。二、問題與例題問題1:在Rt△ABC中,各邊、角之間存在何種數(shù)量關(guān)系? 問題2:這三個式子中都含有哪個邊長??問題3:那么通過這三個式子,邊長c有幾種表示方法??問題4:得到的這個等式,說明了在Rt△中,各邊、角之間存在什么關(guān)系? 問題5:那么能否把銳角三角形轉(zhuǎn)化為直角三角形來求證? 例1.(三)例題分析,加深理解例題:在△ABC中,已知C=,A=,CAC=2620m,求AB.(精確到1米)三、目標檢測1.一個三角形的兩個內(nèi)角分別是30和45,如果45角所對的邊長為8,那么30角所對邊的長是2.在△ABC中,oo(1)已知A=75,B=45,c=,則a=,b=oooo(2)已知A=30,B=120,b=12,則a=,c=oo3.在△ABC中,b=oc=C=60,則A= ____________ o4.在△ABC中,b=3,c=B=30,則a=_____________ 5.在△ABC中,b=2asinB,則B+C=________________配餐作業(yè)一、基礎(chǔ)題(A組)在△ABC中,若a=,b=,A=300, 則c等于()A、2B、C、25或D、以上結(jié)果都不對 2.在△ABC中,一定成立的等式是()==bcosB==bcosA sinAcosBcosC==則△ABC為abcA.等邊三角形C.有一個內(nèi)角為30176。三、教學(xué)問題診斷分析正弦定理是三角形邊角關(guān)系中最常見、最重要的兩個定理之一,它準確反映了三角形中各邊與它所對角的正弦的關(guān)系,對于它的形式、內(nèi)容、證明方法和應(yīng)用必須引起足夠的重視。能力目標利用正弦定理解決以下兩類問題:①已知三角形的兩角及一邊,求其他的角和邊; ②已知三角形的兩邊及其中一邊的對角,求其他的邊和角。通過本節(jié)課學(xué)習(xí),培養(yǎng)學(xué)生“用數(shù)學(xué)”的意識和自主、合作、探究能力。- - =abcbc由=得c=bsinC=2620180。a=3,則A= 3二、鞏固題(B組)△ABC中,B=1350,C=150,a=5,則此三角形的最大邊長為 △ABC中,已知A=2B,△ABC中,已知tanA=a取值范圍是. b1,tanB=,則其最長邊與最短邊的比為. x,則x的取值范圍是.三、提高題(C組)11.在△ABC中,a+b=1,A=600,B=450,求a,b12△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,試判斷△ABC的形狀。三、教學(xué)重難點教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。即已知AC=1500m,∠C=450,∠B=300。正弦定理描述了任意三角形中邊與角的一種數(shù)量關(guān)系。例1簡單,結(jié)果為唯一解?!鰽BC中,已知下列條件,解三角形(角度精確到10,邊長精確到1cm):(1)A=45176。那么正弦定理的證明還有沒有其他的證法?學(xué)生可以自主思考,也可以合作探究。運用正弦定理解決了我們所要解決的實際問題。情感、態(tài)度與價值觀:通過正弦定理的發(fā)現(xiàn)與證明過程體驗數(shù)學(xué)的探索性與創(chuàng)造性,讓學(xué)生體驗成功的喜悅,激發(fā)學(xué)生的好奇心與求知欲并培養(yǎng)學(xué)生堅忍不拔的意志、實事求是的科學(xué)態(tài)度和樂于探索、勇于創(chuàng)新的精神。A的正弦與208。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點,而且通過對定理的探究,能使學(xué)生體驗到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,進而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。過程與方法:讓學(xué)生從已有的知識出發(fā),共同探究在任意三角形中,邊與其對角的關(guān)系,引導(dǎo)學(xué)生通過觀察、歸納、猜想、證明,由特殊到
點擊復(fù)制文檔內(nèi)容
化學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1