【摘要】第一篇:用放縮法證明不等式1 用放縮法證明不等式 時間:2009-01-1310:47點擊: 1230次 不等式是高考數(shù)學(xué)中的難點,而用放縮法證明不等式學(xué)生更加難以掌握。不等式是衡量學(xué)生數(shù)學(xué)素...
2024-10-28 03:53
【摘要】第一篇:構(gòu)造函數(shù)證明數(shù)列不等式 構(gòu)造函數(shù)證明數(shù)列不等式ln2ln3ln4ln3n5n+6+++L+n3n-(n?N*).:23436 :(1)a32,a+a+L+(n32)a2(n+1)23n...
2024-10-31 14:50
【摘要】不等式的證明的方法介紹新疆奎屯市第一高級中學(xué) 王新敞不等式的性質(zhì)及常用的證明方法主要有:比較法、分析法、綜合法、數(shù)學(xué)歸納法等.要明確分析法、反證法、換元法、判別式法、放縮法證明不等式的步驟及應(yīng)用范圍.若能夠較靈活的運用常規(guī)方法(即通性通法)、運用數(shù)形結(jié)合、函數(shù)等基本數(shù)學(xué)思想,就能夠證明不等式的有關(guān)問題.一、不等式的證明方法(1)比較法:作差比較:.作差比較的步驟:
2025-08-04 10:12
【摘要】數(shù)形結(jié)合解不等式和數(shù)形結(jié)合解含參數(shù)不等式問題教案(新授)一、教學(xué)任務(wù)分析:教學(xué)目標(biāo)知識技能要求學(xué)生了解數(shù)形結(jié)合的基本思路、理解數(shù)形結(jié)合的含義及其與不等式的結(jié)合數(shù)學(xué)思考深入體會抽象的數(shù)學(xué)語言與直觀的幾何圖形之間的關(guān)系解決問題學(xué)會使用數(shù)形結(jié)合思想解決不等式及含參數(shù)的不等式問題情感態(tài)度通過由淺入深的教學(xué)方法增加學(xué)生的求知欲重點抽象的數(shù)學(xué)語言與直觀的
2025-08-18 16:59
【摘要】第一篇:導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 導(dǎo)數(shù)與數(shù)列不等式的綜合證明問題 典例:(2017全國卷3,21)已知函數(shù)f(x)=x-1-alnx。(1)若f(x)30,求a的值; (2)設(shè)m為整數(shù),且...
2024-10-28 18:52
【摘要】存檔編號贛南師范學(xué)院學(xué)士學(xué)位論文放縮法在不等式證明中的應(yīng)用教學(xué)學(xué)院數(shù)學(xué)與計算機科學(xué)學(xué)院屆別2022屆專
2025-01-06 06:15
【摘要】第一部分:三個重要的放縮一、放縮后轉(zhuǎn)化為等比數(shù)列。例1.滿足:(1)用數(shù)學(xué)歸納法證明:(2),求證:二、放縮后裂項迭加例2.?dāng)?shù)列,,其前項和為求證:(1)用表示出(2)若在上恒成立,求的取值范圍(3)證明:
2025-06-16 12:41
【摘要】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11
【摘要】第一篇:證明不等式的幾種方法 證明不等式的幾種方法 黃啟泉 04數(shù)學(xué)與應(yīng)用數(shù)學(xué)1班30號 近幾年來,有關(guān)不等式的證明問題在高考、競賽中屢見不鮮,由于不等式的證明綜合性強,對學(xué)生的思維靈活性與創(chuàng)...
2024-11-03 22:04
【摘要】第一篇:不等式證明的幾種方法 不等式證明的幾種方法 劉丹華 余姚市第五職業(yè)技術(shù)學(xué)校 摘要:不等式的證明可以采用不同的方法,每種方法具有一定的適用性,并有一定的規(guī)律可循。通過對不等式證明方法和例...
2024-10-28 23:03
【摘要】第一篇:構(gòu)造法與放縮法在不等式證明中的運用 構(gòu)造法與放縮法在不等式證明中的運用 例1:設(shè)函數(shù)f(x)=x-(x+1)ln(x+1)(x-1).(1)求f(x)的單調(diào)區(qū)間; (2)證明:當(dāng)nm...
2024-10-28 03:31
【摘要】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【摘要】第一篇:導(dǎo)數(shù)證明不等式的幾個方法 導(dǎo)數(shù)證明不等式的幾個方法 1、直接利用題目所給函數(shù)證明(高考大題一般沒有這么直接)已知函數(shù)f(x)=ln(x+1)-x,求證:當(dāng)x-1時,恒有 1-1£ln(...
2024-10-28 01:40
【摘要】第一篇:不等式的證明方法 中原工學(xué)院常用方法 (作差法)[1] 在比較兩個實數(shù)a和b的大小時,:作差——變形——判斷(正號、負(fù)號、零).變形時常用的方法有:配方、通分、因式分解、和差化積、應(yīng)用已...
2024-10-28 21:51