【摘要】離散型隨機變量的方差一般地,若離散型隨機變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機變量的均值的定義
2024-11-18 15:23
【摘要】山東省泰安市肥城市第三中學高中數(shù)學離散型隨機變量學案新人教A版選修2-3學習內(nèi)容學習指導即時感悟?qū)W習目標:1、理解隨機變量及離散型隨機變量的含義;了解隨機變量與函數(shù)的區(qū)別和聯(lián)系;會用離散型隨機變量描述隨機現(xiàn)象。2、通過實例,理解隨機變量與離散性隨機變量的含義,發(fā)展抽象、概括能力,提高實際解決問題的能力。
2024-11-28 02:11
【摘要】《離散型隨機變量的均值與方差-期望值》教學目標?1了解離散型隨機變量的期望的意義,會根據(jù)離散型隨機變量的分布列求出期望.?⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的離散型隨機變量的期望?教學重點:離散型隨機變量的期望的概念?教學難點:根據(jù)離
2024-11-18 12:12
【摘要】.,"";,,.,.,績的方差需要考察這個班數(shù)學成則兩極分化績是否某班同學數(shù)學成要了解很重要的是看平均分總體水平數(shù)學測驗中的要了解某班同學在一次例如數(shù)字特征趣的是隨機變量的某些有時我們更感興但在實際問題中概率機變量相關(guān)事件的分布列確定與該隨可以由它的概率對于離散型隨機變量?,1:2:3kg/36,kg/2
2025-06-21 08:53
【摘要】隨機變量及概率分布學習目標重點、難點1.能說出隨機變量的定義;2.能記住隨機變量的概率分布列的兩種形式;3.理解并會應(yīng)用兩點分布.重點:隨機變量的概率分布列.難點:每個隨機變量的概率求法,求隨機變量的概率分布列.1.隨機變量一般地,如果隨機試驗的結(jié)果,可以用一個變量來表示,那么這樣的變量叫做隨
2024-11-19 19:15
【摘要】離散型隨機變量的均值教學案班級學號姓名?學習目標1.通過實例,理解取有限值的離散型隨機變量均值(數(shù)學期望)的概念和意義;2.能計算簡單離散型隨機變量均值(數(shù)學期望),并能解決一些實際問題.?重點難點重點:能計算簡單離散型隨機變量均值難點:
2024-11-19 19:14
【摘要】選修2-3第二章第2課時一、選擇題1.已知隨機變量X的分布列為:P(X=k)=12k,k=1、2、?,則P(2<X≤4)=()A.316B.14C.116D.516[答案]A[解析]P(2<X≤4)=P(X=3)+P(X=4)=12
2024-12-05 06:40
【摘要】離散型隨機變量的均值與方差教學目標(1)進一步理解均值與方差都是隨機變量的數(shù)字特征,通過它們可以刻劃總體水平;(2)會求均值與方差,并能解決有關(guān)應(yīng)用題.教學重點,難點:會求均值與方差,并能解決有關(guān)應(yīng)用題.教學過程一.問題情境復習回顧:1.離散型隨機變量的均值、方差、標準差的概念和意義,以及計算公式.2.練習
2024-12-09 04:43
【摘要】一、教學目標:1、知識與技能:了解離散型隨機變量的均值或期望的意義,會根據(jù)離散型隨機變量的分布列求出均值或期望。2、過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的離散型隨機變量的均值或期望。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學
2024-12-03 11:29
【摘要】學案5離散型隨機變量及其分布列離散型隨機變量及其分布列布列的概念,認識分布列刻畫隨機現(xiàn)象的重要性,會求某些取有限個值的離散型隨機變量的分布列.,并能進行簡單應(yīng)用.求簡單隨機變量的分布列,以及由此分布列求隨機變量的期望與方差.這部分知識綜合性強,涉及排列、組合、二項式定理和概率,仍會以解答題形式出現(xiàn),以
2025-06-12 18:50
【摘要】離散型隨機變量的期望1、什么叫n次獨立重復試驗?一.復習其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項分布,記作X~B(n,p)一般地,由n次試驗構(gòu)成,且每次試驗互相獨立完成,每次試驗的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗中P(A)
【摘要】一、教學目標:1、知識與技能:了解離散型隨機變量的方差、標準差的意義,會根據(jù)離散型隨機變量的分布列求出方差或標準差。2、過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計算有關(guān)隨機變量的方差。3、情感、態(tài)度與價值觀:承前啟后,感悟數(shù)學與生活的和諧之美
【摘要】一.隨機事件:在一定條件下可能發(fā)生也可能不發(fā)生的事件二、隨機事件的概率一般地,在大量重復進行同一試驗時,事件A發(fā)生的頻率總是接近于某個常數(shù),在它附近擺動,這時就把這個常數(shù)叫做事件A的概率,記作P(A)mn知識回顧幾點說明:(
2025-01-06 16:34
【摘要】離散型隨機變量的分布列問題導學一、離散型隨機變量的分布列活動與探究1某商店試銷某種商品20天,獲得如下數(shù)據(jù):日銷售量(件)0123頻數(shù)1595試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變),設(shè)某天開始營業(yè)時有該商品3件,當天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當天進貨補充至3件,否則不進
2024-11-28 00:03