【摘要】雙曲線的簡單幾何性質(zhì)(2)關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)關(guān)于x軸、y軸、原點對稱漸進(jìn)線..yB2A1A2B1xOF2F1xB1y
2024-11-10 08:36
【摘要】求曲線方程(3)[例1]在△ABC中,已知頂點A(1,1),B(3,6)且△ABC的面積等于3,求頂點C的軌跡方程.解:設(shè)頂點C的坐標(biāo)為(x,y),作CH⊥AB于H,則動點C屬于集合P={C|}321??CHAB∵kAB=
2024-11-09 03:30
【摘要】雙曲線的概念及標(biāo)準(zhǔn)方程雙曲線的定義平面內(nèi)到兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線。兩焦點的距離叫做雙曲線的焦距(2c)這兩個定點叫做雙曲線的焦點。1、建系:以線段F1F2所在直線為x軸,線段F1F2的垂直平分
2024-11-09 02:27
【摘要】2.2雙曲線2.雙曲線的定義與標(biāo)準(zhǔn)方程課堂互動講練知能優(yōu)化訓(xùn)練課前自主學(xué)案學(xué)習(xí)目標(biāo)學(xué)習(xí)目標(biāo),幾何圖形及標(biāo)準(zhǔn)方程的推導(dǎo)過程.2.掌握雙曲線的標(biāo)準(zhǔn)方程.3.會利用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡單的實際問題.課前自主學(xué)案溫故夯基3已知橢圓方程為5x
2024-11-09 02:17
【摘要】富源縣第一中學(xué)葉學(xué)理問題1:橢圓的定義是什么?平面內(nèi)與兩個定點的距離的和等于常數(shù)(大于)的點的軌跡叫做橢圓。21,FF21FF問題2:如果把上述定義中“距離的和”改為“距離的差”那么點的軌跡會發(fā)生怎樣的變化?平面內(nèi)與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a
2024-11-21 22:44
【摘要】雙曲線的標(biāo)準(zhǔn)方程(第一課時) ?。ㄒ唬┙虒W(xué)目標(biāo) 掌握雙曲線的定義,會推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程,能根據(jù)條件求簡單的雙曲線標(biāo)準(zhǔn)方程. ?。ǘ┙虒W(xué)教程 【復(fù)習(xí)提問】 由一位學(xué)生口答,教師板書. 問題:橢圓的第一定義是什么? 問題:橢圓的標(biāo)準(zhǔn)方程是怎樣的? 【新知探索】 ?。p曲線的概念 如果把上述定義中的“距離的和”改為“距離的差”,那么點的軌跡
2025-07-14 19:04
【摘要】知識回顧:平面內(nèi)到兩定點F1、F2的距離之差的絕對值是定值2a(大于0且小于|F1F2|)的點的軌跡叫做雙曲線。)0(,2||M||M||21caaFF????)0,0(12222????babyax:當(dāng)焦點在X軸上時)00(12222????babxay,當(dāng)焦點在Y軸上
2024-11-22 00:05
【摘要】關(guān)于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點對稱)1
2024-11-17 17:10
【摘要】第五節(jié)圓錐曲線的綜合應(yīng)用1.圓錐曲線的統(tǒng)一定義:平面內(nèi)到__________________________________________________________________是圓錐曲線,當(dāng)________時,軌跡是橢圓;當(dāng)________時,軌跡是雙曲線;當(dāng)________時,軌跡表示拋物線,定點F是圓錐曲線的一個________
2024-11-12 18:19
【摘要】一、轉(zhuǎn)移代入法這個方法又叫相關(guān)點法或坐標(biāo)代換法.即利用動點P’(x’,y’)是定曲線F(x,y)=0上的動點,另一動點P(x,y)依賴于P’(x’,y’),那么可尋求關(guān)系式x’=f(x,y),y’=g(x,y)后代入方程F(x’,y’)=0中,得到動點P的軌跡方程例1:已知點A(3,0),點P在圓x2+y2=1的上半圓周上(即y&g
2024-11-09 01:17
【摘要】......【學(xué)習(xí)目標(biāo)】、范圍、定點、離心率、漸近線等簡單性質(zhì)...【要點梳理】要點一、雙曲線的簡單幾何性質(zhì)雙曲線(a>0,b>0)的簡單幾何性質(zhì)范圍雙曲線上所有的點都在兩條平行直
2025-06-25 22:37
【摘要】??谑徐`山中學(xué)吳瀟oyxF1F2A1A2B2B1復(fù)習(xí)1橢圓的圖像與性質(zhì)標(biāo)準(zhǔn)方程范圍對稱性頂點離心率)0(12222????babyaxaxa???byb???對稱軸:坐標(biāo)軸對稱中心:原點A1,A2,B1,B
2024-10-18 08:09
【摘要】定義圖象方程焦點系yoxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2
2024-11-19 15:32
【摘要】雙曲線的簡單幾何性質(zhì)練習(xí)Axy43?Cxy43??yx43??DByx43?1、雙曲線9x-16y=144的漸近線方程為:22練習(xí)2、實軸長為10、虛軸長為8、焦點在x軸的雙曲線的標(biāo)準(zhǔn)方程為練習(xí)3、焦距為10、虛軸長為8、焦點在y軸
2024-10-19 13:09
【摘要】酚的性質(zhì)和應(yīng)用羥基與芳香烴側(cè)鏈上的碳原子相連,是芳香醇。下列物質(zhì)哪種是酚類?分子中羥基與苯環(huán)(或其他芳環(huán))上的碳原子直接相連的有機化合物屬于酚。相同碳原子個數(shù)的芳香醇與酚類是什么關(guān)系?飽和一元酚的通式?符合此通式的還有什么物質(zhì)?CnH2n-6O芳香醇芳香醚
2024-11-12 18:43