【摘要】雙曲線的幾何性質(zhì)濟源三中盧新民一、知識再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓
2024-11-18 10:03
【摘要】雙曲線的定義及標準方程yxF1F2OA2B2A1B1yxA1F1F2OA2)1,0(??ace橢圓雙曲線方程圖形范圍
2024-11-06 19:22
【摘要】雙曲線方程和性質(zhì)應(yīng)用xyoax?或ax??ay??ay?或)0,(a?),0(a?xaby??xbay??ace?)(222bac??其中關(guān)于坐標軸和原點都對稱性質(zhì)雙曲線)0,0(12222??
2024-11-09 23:30
【摘要】評講作業(yè)及《勸學(xué)》的雙曲線方程。弦長為所截得的,且直線:求漸進線方程為33803021?????yxyx)0(422?????yx解:設(shè)所求雙曲線為????????2243yxxy聯(lián)立0362432??????xx3383)36(12241122???????d4???14:2
2024-11-06 23:49
【摘要】一、回顧1、橢圓的第一定義是什么?2、橢圓的標準方程,焦點坐標是什么?定義圖象方程焦點關(guān)系y·oxF1F2··xyoF1F2··x2a2+y2b2=1
2025-08-07 10:53
【摘要】雙曲線及其標準方程練習(xí)題高二一部數(shù)學(xué)組劉蘇文2017年5月2日一、選擇題1.平面內(nèi)到兩定點E、F的距離之差的絕對值等于|EF|的點的軌跡是( )A.雙曲線 B.一條直線C.一條線段 D.兩條射線2.已知方程-=1表示雙曲線,則k的取值范圍是( )A.-10C.k≥0 D.
2025-06-23 15:30
【摘要】雙曲線的標準方程課題第1課時計劃上課日期:教學(xué)目標知識與技能1.了解雙曲線的標準方程的推導(dǎo)過程,能根據(jù)已知條件求雙曲線的標準方程.2.掌握雙曲線兩種標準方程的形式過程與方法情感態(tài)度與價值觀教學(xué)重難點根據(jù)已知條件求雙曲線的標準方程.橢圓和雙曲線
2024-12-05 09:30
【摘要】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【摘要】【課堂新坐標】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的標準方程課后知能檢測蘇教版選修1-1一、填空題1.雙曲線x216-y29=1的焦點坐標為________.【解析】∵c2=a2+b2=25,∴焦點坐標為(±5,0).【答案】(±5,0)2.
2024-12-04 18:02
【摘要】F2F1M定義曲線方程焦點關(guān)系y·oxF1F2··yoF1F2··|MF1|+|MF2|=2a(2a|F1F2|)a2=b2+c2F(±c,0)
2024-11-06 14:33
【摘要】雙曲線的定義及標準方程[復(fù)習(xí)]1、求曲線方程的步驟一、建立坐標系,設(shè)動點的坐標;二、找出動點滿足的幾何條件;三、將幾何條件化為代數(shù)條件;四、化簡,得所求方程。2、橢圓的定義到平面上兩定點F1,F(xiàn)2的距離之和(大于|F1F2|)為常數(shù)的點的軌跡3、橢圓的標準方程有幾類?[兩類][思考]到平面上兩定點
【摘要】雙曲線的簡單幾何性質(zhì)(3)雙曲線的焦半徑一般地,若P(x0,y0)是橢圓(ab0)上任意一點,則點P到左焦點F1的距離為:點P到右焦點F2的距離為:12222??byaxxyOF1
2025-08-05 04:06
【摘要】雙曲線的簡單幾何性質(zhì)(3)雙曲線的焦半徑懷化鐵路第一中學(xué)陳娟一般地,若P(x0,y0)是橢圓(ab0)上任意一點,則點P到左焦點F1的距離為:點P到右焦點F2的距離為:12222??
2025-08-04 14:32
【摘要】2022/8/201課題:說課案說課人:段成勇單位:開遠一中課件制作:佘維平2022/8/202?一、教材分析1、本節(jié)教材的地位和作用由曲線方程研究曲線的幾何性質(zhì),并正確地畫出它的圖形,是解析幾何所研究的主要問題之一,本課就是根
2025-07-23 05:45
【摘要】直線和雙曲線的位置關(guān)系作課教師簡介:周萍,畢業(yè)于齊齊哈爾師范學(xué)院數(shù)學(xué)系,中學(xué)一級教師,教齡12年,省級教學(xué)能手,市、縣級骨干教師,市優(yōu)秀實驗教師,縣科研骨干教師。直線和橢圓的位置關(guān)系:相交相切相離→兩個公共點→一個公共點→沒
2024-11-16 21:27