【摘要】§集合的基本運(yùn)算一.教學(xué)目標(biāo):1.知識與技能(1)理解兩個集合的并集與交集的含義,會求兩個簡單集合的交集與并集.(2)理解在給定集合中一個子集的補(bǔ)集的含義,會求給定子集的補(bǔ)集.(3)能使用Venn圖表達(dá)集合的運(yùn)算,體會直觀圖示對理解抽象概念的作用.2.過程與方法學(xué)生通過觀察和類比,借
2024-11-28 07:34
【摘要】§集合的基本運(yùn)算教學(xué)目的:1、深刻理解并掌握交集與并集的概念及有關(guān)性質(zhì);2、掌握全集與補(bǔ)集的概念及其表示法.教學(xué)重難點:交集與并集的概念、性質(zhì)及運(yùn)算教學(xué)過程:(一)復(fù)習(xí):子集的概念及有關(guān)符號與性質(zhì)提問(板演):用列舉法表示集合:A={6的正約數(shù)},B={10的正約數(shù)},C={6與10的正公約
2024-11-24 21:33
【摘要】§(1)沈陽二中數(shù)學(xué)組高永德自學(xué)提綱?閱讀教材p15-18頁回答下列問題?1什么是交集??2交集有那些性質(zhì)??3什么是并集??4并集有那些性質(zhì)?第一次進(jìn)貨:第二次進(jìn)貨:第一次進(jìn)貨:第二次進(jìn)貨:兩次
2024-11-09 05:06
【摘要】空間向量的正交分解及其坐標(biāo)表示一、空間直角坐標(biāo)系單位正交基底:如果空間的一個基底的三個基向量互相垂直,且長都為1,則這個基底叫做單位正交基底,常用來I,j,k表示空間直角坐標(biāo)系:在空間選定一點O和一個單位正交基底i、j、k。以點O為原點,分別以i、j、
2024-11-18 07:54
【摘要】集合的基本運(yùn)算[綜合訓(xùn)練B組]一、選擇題1.下列命題正確的有()(1)很小的實數(shù)可以構(gòu)成集合;(2)集合??1|2??xyy與集合????1|,2??xyyx是同一個集合;(3)3611,,,,242?這些數(shù)組成的集合有5個元素;(4)集合????Ryx
2024-12-03 12:24
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《向量加法運(yùn)算及其幾何意義》教學(xué)目標(biāo)?掌握向量的加法運(yùn)算,并理解其幾何意義;?會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問題的能力;?通過將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會用
2024-11-12 16:45
【摘要】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運(yùn)算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-12 19:04
【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會用基本不等式證明一些簡單不等式;?會用基本不等式解決簡單的最值問題.(重點)如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時取“=”號)如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-12 17:13
【摘要】當(dāng)時,0??與同向,ba且是的倍;||b||a?當(dāng)時,0??與反向,ba且是的倍;||b||a||?當(dāng)時,0??0b?,且。||0
2024-11-09 03:31
【摘要】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12
【摘要】X學(xué)習(xí)目標(biāo)1熟練掌握平面概念及其表示方法2熟練掌握平面的基本性質(zhì)3掌握線共面、點共線、線共點問題解決方法一、基礎(chǔ)知識回顧:平面的基本性質(zhì)一覽表:公理內(nèi)容作用公理1一直線上有兩個點在一個平面內(nèi),
2024-11-09 01:25
【摘要】向量的坐標(biāo)表示與運(yùn)算復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?平面向量的基本定理:向量的基底:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有
2024-11-09 03:52
【摘要】觀察集合A,B,C與D的關(guān)系:A={菱形}B={矩形}C={平行四邊形}D={四邊形}定義在研究集合與集合的關(guān)系時,如果一些集合是某個給定集合的子集,則稱這個集合為全集.全集常用U表示.A={菱形}B={矩形}C={平行四邊形}D={四邊形}定義設(shè)U是全
2024-11-24 22:54
【摘要】觀察集合A,B,C元素間的關(guān)系:A={4,5,6,8},B={3,5,7,8},C={3,4,5,6,7,8}定義一般地,由屬于集合A或?qū)儆诩螧的所有元素組成的集合叫做A與B的并集,記作A∪B即A∪B={xx∈A,或
2024-11-24 23:00