【摘要】中國領(lǐng)先的中小學(xué)教育品牌精銳教育學(xué)科教師輔導(dǎo)講義講義編號11sh11sx00學(xué)員編號:年級:高二課時(shí)數(shù):3學(xué)員姓名:輔導(dǎo)科目:
2025-08-17 08:19
【摘要】正弦函數(shù)圖象的對稱性北京市第十九中學(xué)檀晉軒 【教學(xué)目標(biāo)】1.使學(xué)生掌握正弦函數(shù)圖象的對稱性及其代數(shù)表示形式,理解誘導(dǎo)公式(R)與(R)的幾何意義,體會(huì)正弦函數(shù)的對稱性.2.在探究過程中滲透由具體到抽象,由特殊到一般以及數(shù)形結(jié)合的思想方法,提高學(xué)生觀察、分析、抽象概括的能力.3.通過具體的探究活動(dòng),培養(yǎng)學(xué)生主動(dòng)利用信息技術(shù)研究并解決數(shù)學(xué)問題的能力,增強(qiáng)學(xué)生之間合作與交流的
2025-05-16 05:57
【摘要】......(一)、教學(xué)內(nèi)容1.二次函數(shù)的解析式六種形式①一般式y(tǒng)=ax2+bx+c(a≠0)②頂點(diǎn)式(a≠0已知頂點(diǎn))③交點(diǎn)式(a≠0已知二次函數(shù)與X軸的交點(diǎn))
2025-05-16 01:14
【摘要】課題:垂直于弦的直徑復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在直線形中學(xué)過哪些軸對稱圖形?如果一個(gè)圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它們的對稱軸.看一看
2024-11-23 10:46
【摘要】第四章分子對稱性與群論初步對稱性普遍存在于自然界如:花瓣、蝴蝶、人體、各種建筑、甚至優(yōu)美的樂章都有對稱性,有的存在對稱軸、有的存在對稱面。對稱性的研究在化學(xué)中有廣泛的應(yīng)用,如:分子立體構(gòu)型原子軌道的雜化,以及幾乎所有的電子光譜定律都是對對稱性的研究得出的。由于課時(shí)和課程性質(zhì)所限,我們只對基本知識(shí)作基本介紹詳細(xì)的數(shù)學(xué)推導(dǎo)不深入涉及,力求實(shí)用,某些
2025-04-28 23:37
【摘要】周期性類型一:判斷周期函數(shù)(1),滿足(2),滿足(3),滿足(4),滿足答案:(1)令???∴????∴∴T=2周期函數(shù)(2)∴T=4周期函數(shù)(3)???∴T=4(4)
2025-03-24 12:16
【摘要】函數(shù)的奇偶性與周期性一、函數(shù)的奇偶性知識(shí)點(diǎn)歸納1函數(shù)的奇偶性的定義:如果對于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫偶函數(shù).如果對于函數(shù)f(x)定義域內(nèi)的任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫奇函數(shù).2奇偶函數(shù)的性質(zhì):(1)定義域關(guān)于原點(diǎn)對稱;(2)偶函數(shù)的圖象關(guān)于軸對稱,奇函數(shù)的圖象關(guān)于原點(diǎn)對稱;
2025-03-24 12:18
【摘要】函數(shù)的奇偶性與周期性一、函數(shù)奇偶性定義奇偶性定 義圖象特點(diǎn)偶函數(shù)如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)是偶函數(shù)關(guān)于y軸對稱奇函數(shù)如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)是奇函數(shù)關(guān)于原點(diǎn)對稱二、需要注意的問題1.判斷函數(shù)的奇偶性,易忽視判斷函數(shù)定義域是否關(guān)
2025-04-16 23:39
【摘要】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個(gè)圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2025-10-09 06:59
【摘要】圓的對稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實(shí)驗(yàn)、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2024-11-23 13:04
【摘要】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個(gè)量相等就可以推出其他的兩個(gè)量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【摘要】......函數(shù)圖象關(guān)于點(diǎn)對稱性函數(shù)是中學(xué)數(shù)學(xué)教學(xué)的主線,是中學(xué)數(shù)學(xué)的核心內(nèi)容,也是整個(gè)高中數(shù)學(xué)的基礎(chǔ)。函數(shù)的性質(zhì)是高考的重點(diǎn)與熱點(diǎn),函數(shù)的對稱性是函數(shù)的一個(gè)基本性質(zhì)之一,對稱關(guān)系不僅廣泛存在于數(shù)學(xué)問題之中,而且利用對稱性往往能更簡捷的
2025-06-18 20:37
【摘要】第五節(jié)晶體的對稱性本節(jié)主要內(nèi)容:對稱性與對稱操作晶系和布拉維原胞對稱性與對稱操作對稱操作所依賴的幾何要素。),,(321xxxX????經(jīng)過某一對稱操作,把晶體中任一點(diǎn)變?yōu)榭梢杂?/span>
2025-10-25 22:40
【摘要】函數(shù)的周期性一、周期函數(shù)的定義對于函數(shù),如果存在一個(gè)非零常數(shù),使得當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)叫做這個(gè)函數(shù)的周期。說明:(1)必須是常數(shù),且不為零;(2)對周期函數(shù)來說必須對定義域內(nèi)的任意都成立。二、常見函數(shù)的最小正周期正弦函數(shù)y=sin(ωx+φ)(w0)最小正周期為T=y=cos(ωx+φ)(w>
2025-08-08 19:39
【摘要】......函數(shù)周期性分類解析一.定義:若T為非零常數(shù),對于定義域內(nèi)的任一x,使恒成立則f(x)叫做周期函數(shù),T叫做這個(gè)函數(shù)的一個(gè)周期。二.重要結(jié)論1、,則是以為周期的周期函數(shù);2、若函數(shù)y=f(x)滿足f(x+a