【摘要】浙江師范大學(xué)數(shù)理與信息工程學(xué)院浙江師范大學(xué)數(shù)理與信息工程學(xué)院模擬試題1一、填空題:(每小題2分,共8分)1.方程()()0dypxyQxdx???的通解是①;2.(,)(,)0MxydxNxydy??是全微分方程(恰當(dāng)方程)的充要
2025-01-09 00:34
【摘要】常微分方程期終考試試卷(1)一、填空題(30%)1、方程有只含的積分因子的充要條件是()。有只含的積分因子的充要條件是______________。2、_____________稱(chēng)為黎卡提方程,它有積分因子______________。3、__________________稱(chēng)為伯努利方程,它有積分因子_________。4、若為階齊線(xiàn)性方程的個(gè)解,則它
2025-03-25 01:12
【摘要】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱(chēng)為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫(xiě)成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19
【摘要】常微分方程課程簡(jiǎn)介常微分方程是研究自然科學(xué)和社會(huì)科學(xué)中的事物、物體和現(xiàn)象運(yùn)動(dòng)、演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理、化學(xué)、生物、工程、航空航天、醫(yī)學(xué)、經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以描述成適當(dāng)?shù)某N⒎址匠蹋缗nD運(yùn)動(dòng)定律、萬(wàn)有引力定律、機(jī)械能守恒定律,能量守恒定律、人口發(fā)展規(guī)律、生態(tài)種群競(jìng)爭(zhēng)、疾病傳染、遺傳基因變異、股票的漲伏趨勢(shì)、利
2025-08-01 13:03
【摘要】2021/6/17常微分方程§微分方程的降階和冪級(jí)數(shù)解法2021/6/17常微分方程一、可降階的一些方程類(lèi)型n階微分方程的一般形式:0),,,,()('?nxxxtF?1不顯含未知函數(shù)x,或更一般不顯含未知函數(shù)及其直到k-1(k1)階導(dǎo)數(shù)的方程是)(0),,,,()()1()(??
2025-05-11 05:30
【摘要】目錄上頁(yè)下頁(yè)返回結(jié)束第五章線(xiàn)性微分方程組前面幾章研究了只含一個(gè)未知函數(shù)的一階或高階方程,但在許多實(shí)際的問(wèn)題和一些理論問(wèn)題中,往往要涉及到若干個(gè)未知函數(shù)以及它們導(dǎo)數(shù)的方程所組成的方程組,即微分方程組,本章將介紹一階微分方程組的一般解法,重點(diǎn)仍在線(xiàn)性方程組的基本理論和常系數(shù)線(xiàn)性方程的解法上.
2025-01-20 04:56
【摘要】1.=2xy,并滿(mǎn)足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時(shí),y=0原方程的通解為y=cex,x=0y=1時(shí)c=1特解為y=e.2.ydx+(x+1)dy=0并求滿(mǎn)足初始條件:x=0,y=1的特解。解:ydx=-(x+1)dydy=-dx兩邊積分
2025-06-18 13:01
【摘要】《數(shù)學(xué)系(常微分方程)》教學(xué)大綱 學(xué)時(shí):51學(xué)時(shí) 學(xué)分:3 適用專(zhuān)業(yè):數(shù)學(xué)、系統(tǒng)科學(xué)與工程及控制理論與應(yīng)用等專(zhuān)業(yè)。大綱執(zhí)筆人:魯世平 大綱審定人:劉樹(shù)德 一、說(shuō)明(500字左右)1、課程的性質(zhì)、地位和任務(wù)本課程是高等師范院校數(shù)學(xué)專(zhuān)業(yè)和綜合性大學(xué)數(shù)學(xué)專(zhuān)業(yè)、系統(tǒng)科學(xué)與工程專(zhuān)業(yè)、控制理論與應(yīng)用等專(zhuān)業(yè)的一門(mén)重要基礎(chǔ)課程,它的任務(wù)是使學(xué)生獲得微
2025-08-23 02:02
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當(dāng)時(shí),得到,兩邊積分即可得到結(jié)果;當(dāng)時(shí),則也是方程的解。、解:當(dāng)時(shí),有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當(dāng)時(shí),可有,兩邊積分可得結(jié)果;當(dāng)時(shí),為原方程的解,當(dāng)時(shí),為原方程的解。、解:當(dāng)時(shí),有兩邊積分
2025-06-25 01:32
【摘要】常微分方程在數(shù)學(xué)建模中的應(yīng)用這里介紹幾個(gè)典型的用微分方程建立數(shù)學(xué)模型的例子.一、人口預(yù)測(cè)模型由于資源的有限性,當(dāng)今世界各國(guó)都注意有計(jì)劃地控制人口的增長(zhǎng),為了得到人口預(yù)測(cè)模型,必須首先搞清影響人口增長(zhǎng)的因素,而影響人口增長(zhǎng)的因素很多,如人口的自然出生率、人口的自然死亡率、人口的遷移、自然災(zāi)害、戰(zhàn)爭(zhēng)等諸多因素,如果一開(kāi)始就把所有因素都考慮進(jìn)去,,先把問(wèn)題簡(jiǎn)化,建立比較粗糙的模
2024-10-04 17:06
【摘要】用分離變量法解常微分方程重慶師范大學(xué)涉外商貿(mào)學(xué)院數(shù)學(xué)與數(shù)學(xué)應(yīng)用(師范)2012級(jí)3班鄧海飛指導(dǎo)教師申治華摘要變量可分離的方程是常微分中一個(gè)基本的類(lèi)型,分離變量法是解決微分方程的初等解法。本文研究了變量分離方程的多種類(lèi)型和解法,通過(guò)適當(dāng)?shù)淖兞刻鎿Q把方程化為變量分離方程,例如齊次方程、線(xiàn)性方程、Riccati方程。并且通過(guò)相應(yīng)的例題具體演繹分離變量法解微分方程。最后本文
2025-08-05 01:06
【摘要】例1一曲線(xiàn)通過(guò)點(diǎn)(1,2),且在該曲線(xiàn)上任一點(diǎn)),(yxM處的切線(xiàn)的斜率為x2,求這曲線(xiàn)的方程.解)(xyy?設(shè)所求曲線(xiàn)為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線(xiàn)方程為一、問(wèn)題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00
【摘要】常微分方程的初等解法1.常微分方程的基本概況:自變量﹑未知函數(shù)及函數(shù)的導(dǎo)數(shù)(或微分)組成的關(guān)系式,得到的便是微分方程,通過(guò)求解微分方程求出未知函數(shù),自變量只有一個(gè)的微分方程稱(chēng)為常微分方程。:常微分方程是研究自然科學(xué)和社會(huì)科學(xué)中的事物、物體和現(xiàn)象運(yùn)動(dòng)﹑演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理﹑化學(xué)﹑生物﹑工程﹑航空﹑航天﹑醫(yī)學(xué)﹑經(jīng)濟(jì)和金融領(lǐng)域中的許多原理和規(guī)律都可以
【摘要】浙江師范大學(xué)數(shù)理與信息工程學(xué)院???模擬試題1一、填空題:(每小題2分,共8分)·參考答案o1.?2.o3.??4. 二、是非判斷題:(每小題2分,共12分)·參考答案o1.×,2.
2025-06-24 18:40
【摘要】Matlab解常微分方程的初值問(wèn)題以下類(lèi)容來(lái)源于:精通matlab-張易華;清華出版社;1999年。1:?jiǎn)栴}常微分方程的初值問(wèn)題的標(biāo)準(zhǔn)數(shù)學(xué)表述為:;我們要求解的任何高階常微分方程都可以用替換法化為上式所示的一階形式,其中y為向量,yo為初始值。2:Matlab中解決以上問(wèn)題的步驟(1):化方程組為標(biāo)準(zhǔn)形式。例如:y’’’-3y’’-y’y
2025-01-14 21:16