【摘要】向量的坐標表示平面向量基本定理一、填空題1.若e1,e2是平面內的一組基底,則下列四組向量能作為平面向量的基底的是________.①e1-e2,e2-e1②2e1+e2,e1+2e2③2e2-3e1,6e1-4e2④e1+e2,e1-e22.下面三種說法中,正確的是________.①一個平面
2024-12-05 10:15
【摘要】課題:平面向量基本定理班級:姓名:學號:第學習小組【學習目標】1、了解平面向量基本定理;2、掌握平面向量基本定理及其應用?!菊n前預習】1、共線向量基本定理一般地,對于兩個向量??baa,0?,如果有一個實數(shù)?,使_______
2024-11-19 21:43
【摘要】《平面向量的數(shù)量積》教學設計及反思交口第一中學趙云鵬平面向量的數(shù)量積是繼向量的線性運算之后的又一重要運算,也是高中數(shù)學的一個重要概念,它是溝通代數(shù)、幾何與三角函數(shù)的一種重要工具,在每年高考中也是重
2025-04-17 01:00
【摘要】第一篇:平面向量在高中數(shù)學教學中的作用 平面向量在高中數(shù)學教學中的作用 、定理、性質及有關公式,可以簡化解題過程,,本身這個運算學生總最初接觸運算都是數(shù)與數(shù)之間的運算,而加入向量運算之后,向量運算...
2024-11-16 22:11
【摘要】正交分解問題?問題,理論上,一條直線由該直線上的一個向量確定了,那么平面呢?設、是同一平面內的兩個不共1e2e線的向量,a是這一平面內的任一向量,1e2e我們研究a與、之間的關系。1ea2e物理學中的力的分解模型OC=OM+ON=
2025-07-23 03:15
【摘要】2.3向量的坐標表示2.平面向量基本定理情景:“神舟”十號宇宙飛船在升空的某一時刻,速度可以分解成豎直向上和水平向前的兩個分速度.在力的分解的平行四邊形法則中,我們看到一個力可以分解為兩個不共線方向的力的和.思考:平面內任一向量是否可以用兩個不共線的向量來表示呢?1.如果e1,e2是同一平面內
【摘要】精品資源第五章平面向量1、非零向量不共線,若+=,-=,則⊥是||=||的() A、充要條件 B、充分不必要條件 C、必要不充分條件 D、既不充分又不必要條件1、A【思路分析】法一:⊥?=(+)?(-)=||2-||2=0||=||法二:作,,以,為鄰邊作平行四邊形OACB,則=,=.⊥為菱形||=||
2025-06-24 19:18
【摘要】平面向量說課稿我說課的內容是《平面向量的實際背景及基本概念》的教學,所用的教材是人民教育出版社出版的普通高中課程標準實驗教科書數(shù)學必修四,教學內容為第74頁至76頁.下面我從教材分析,重點難點突破,教學方法和教學過程設計四個方面來說明我對這節(jié)課的教學設想.一教材分析1地位和作用向量是近
2025-04-16 23:06
【摘要】4.平面向量的基本定理、平面向量的坐標表示及平面向量的坐標運算.5.平面向量的數(shù)量積及向量的應用.1.向量的概念,向量的幾何表示,共線向量的概念.2.向量的加法、減法法則.3.實數(shù)與向量的積、兩個向量共線的充要條件.3.掌握平面向量的數(shù)量積及其幾何意義,能用平面向量的數(shù)量積處理有關長度、角度和垂直的
2025-05-19 17:09
【摘要】設向量(1)若與垂直,求的值;(2)求的最大值;(3)若,求證:∥.答案:由與垂直,,即,;,最大值為32,所以的最大值為。由得,即,所以∥.來源:09年高考江蘇卷題型:解答題,難度:容易已知向量的夾角為60°,則的值為 C. D.
2025-01-15 03:33
【摘要】第一篇:平面向量的應用 平面向量的應用 平面向量是一個解決數(shù)學問題的很好工具,它具有良好的運算和清晰的幾何意義。在數(shù)學的各個分支和相關學科中有著廣泛的應用。下面舉例說明。 一、用向量證明平面幾何...
2025-11-06 03:33
【摘要】平面向量中的最值問題淺析耿素蘭山西平定二中(045200)平面向量中的最值問題多以考查向量的基本概念、基本運算和性質為主,解決此類問題要注意正確運用相關知識,合理轉化。一、利用函數(shù)思想方法求解例1、給定兩個長度為1的平面向量和,,,則的最大值是________.圖11分析:尋求刻畫點變化的變量,建立目標與此變量的函數(shù)關系是解決最值問題的常用途徑。解
2025-03-25 01:21
【摘要】相等向量與共線向量問題提出?向量有哪幾種表示?聯(lián)系:向量與數(shù)量都是有大小的量;區(qū)別:向量有方向且不能比較大小,數(shù)量無方向且能比較大小.向量可以用有向線段表示,也可以用字母符號表示.?零向量和單位向量分別是什么概念?向量的模:表示向量的有向線段的長度.零向量:模為
2025-07-19 00:10
【摘要】......海伊教育學科教師輔導講義學員編號:年級:九年級課時數(shù):學員姓名:張鴻敬輔導科目:數(shù)學學科教師:高
【摘要】第三節(jié)平面向量的數(shù)量積及平面向量的應用舉例基礎梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2025-11-03 16:44