【摘要】第一篇:任意角三角函數定義的教學認識 ,使教學線索清晰,層次分明 三角函數是以函數為主線,,通過用旋轉的觀點將角的概念推廣到任意角,并使角與實數建立一一對應關系,,三角函數是函數的下位概念,同時又...
2024-10-25 15:12
【摘要】任意角的三角函數我們把正弦、余弦,正切、余切,正割及余割都看成是以角為自變量,以比值為函數值的函數,以上六種函數統(tǒng)稱三角函數.任意角的三角函數定義倒數三角函數的一種幾何表示利用單位圓有關的有向線段,作出正弦線,余弦線,正切線.三角函數的幾何表示課件當角的終邊不在坐標軸上時,我們把,都看
2024-11-06 20:47
【摘要】回憶:初中時學過的銳角三角函數的定義??sin?bacACB在RT△ABC中,??cos??tancbcaab思考:任意角的三角函數如何定義呢?探究:在直角坐標系中,銳角的三角函數能用其終邊上的點的坐標表示嗎??OxyM?),(yxP2
2025-08-05 01:07
【摘要】知識一:??0,1AOyx???yxP,﹒siny??cosx??tan(0)yxx???注意:正切函數的定義域是三角函數定義:角a為任意角,它的終邊與單位圓交于點p(x,y),那么??????????kk,2|????xy
2025-07-26 15:41
【摘要】第一課時.,tan)2tan(,cos)2cos(,sin)2sin(Zkkkk???????其中?????????誘導公式一:公式的作用:可以把任意角的三角函數值分別轉化為0到2?的角的同一三角函數值.yxo?sin?cos??+2
2025-07-26 03:00
【摘要】?1.3三角函數的誘導公式?1.誘導公式二~四?(1)公式二?sin(π+α)=;?cos(π+α)=;?tan(π+α)=.?(2)公式三?sin(-α)=;?cos(-α)=;?tan(-α)=.-sinα-cosαta
2024-11-12 17:43
【摘要】三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A
2025-07-23 20:29
【摘要】一、同角三角函數基本關系式tan?·cot?=1sin?·csc?=1cos?·sec?=1sin2?+cos2?=11+tan2?=sec2?1+cot2?=csc2?tan?=cot?=sin?cos?cos?sin?二、誘導公式奇變
【摘要】教師:na復習回顧1、三角函數的定義:設角α的終邊與單位圓交于點P(x,y),那么yx??sin??cos??tanxy(0)x?:)(zk???)2sin(??k作用:1、終邊相同的角的同一三角函數值相等。2、把求任意角的三角函數值問題轉化為求
2025-07-25 23:41
2025-07-24 07:31
【摘要】任意角的三角函數(2)P(-3,y)是角α終邊上一點,且sinα=,則y的值是。θ的終邊上一點P(x,-2)(x≠0),且cosθ=求cosθ和tanθ的值。α的終邊上一點P與A(a,b)關于x軸
【摘要】同角三角函數的基本關系與誘導公式xxxx小測驗:在第三象限,則角的終邊在第象限.,則角的終邊所在的象限是.的終邊過點,且,則X的值是
2025-08-16 00:34
【摘要】第三章三角函數、解三角形?第15講任意角的弧度制及任意角的三角函數第三章三角函數、解三角形真題體驗命題解讀思維導圖考點梳理題型建構母題變式經典題集訓搶分課堂·數學(理)真題體驗命題解讀第三章三角函數、解三角形真題體驗命題解讀思維導圖考點梳理題型
2025-07-26 15:42
【摘要】第一篇:三角函數教案:6課時學案-任意角的三角函數2 課 題:任意角的三角函數 (二): 記憶法則: 第一象限全為正,(其中k?Z):用弧度制可寫成 sina0cosa0cota0si...
2024-10-25 14:40
【摘要】第2課時同角三角函數的基本關系式與誘導公式考綱點擊:±α,π±α的正弦、余弦、正切的誘導公式.: 高考分析:高考對本節(jié)的考查主要集中在利用誘導公式或同角三角函數基本關系式求值上,題型多為選擇題、填空題,主要考查學生運算能力和邏輯推理能力,由于本節(jié)知識的基礎性,試題難度不大,屬于易得分題.教學過程:一、基礎知識梳理1.同角三
2025-04-17 00:11