【摘要】2abab??(0,0)ab??學(xué)習(xí)目標(biāo)?會(huì)用基本不等式證明一些簡(jiǎn)單不等式;?會(huì)用基本不等式解決簡(jiǎn)單的最值問(wèn)題.(重點(diǎn))如果a、b?R,那么a2+b2?2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”號(hào))如果a,b是正數(shù),那么(當(dāng)且僅當(dāng)a=b
2024-11-12 17:13
【摘要】第八節(jié)基本不等式考綱點(diǎn)擊.(小)值問(wèn)題.熱點(diǎn)提示,兼顧考查代數(shù)式變形、化簡(jiǎn)能力,注意“一正、二定、三相等”的條件.,可出選擇題、填空題,也可出以函數(shù)為載體的解答題.,與其他知識(shí)結(jié)合在一起來(lái)考查基本不等式,證明不會(huì)太難.但題型多樣,涉及面廣.基本不等式不等式成立的條件等號(hào)成立的條件
2024-11-09 04:10
【摘要】......新課標(biāo)人教A版高中數(shù)學(xué)必修五典題精講()典題精講例1(1)已知0<x<,求函數(shù)y=x(1-3x)的最大值;(2)求函數(shù)y=x+的值域.思路分析:(1)由極值定理,可知需構(gòu)造某個(gè)和為定值,可考慮把括號(hào)內(nèi)外x的系數(shù)變
2025-03-25 00:14
【摘要】第一篇:不等式3(基本不等式應(yīng)用與證明) 學(xué)習(xí)要求大成培訓(xùn)教案(不等式3基本不等式證明與應(yīng)用)基本不等式 ,,并掌握基本不等式中取等號(hào)的條件是:.算術(shù)平均數(shù):幾何平均數(shù) 2.設(shè)a≥0,b≥0則a...
2025-10-19 23:35
【摘要】基本不等式:授課人:祁玉瑞授課類型:新授課一、知識(shí)與技能:使學(xué)生了解基本不等式的代數(shù)、幾何背景,學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“≥”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;學(xué)會(huì)應(yīng)用基本不等式解決簡(jiǎn)單的數(shù)學(xué)問(wèn)題。過(guò)程與方法:通過(guò)探索基本不等式的過(guò)程,讓學(xué)生體會(huì)研究數(shù)學(xué)問(wèn)題的基本思想方法,學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)探究。情感態(tài)度與價(jià)值
2025-04-17 02:35
【摘要】基本不等式知識(shí)點(diǎn)總結(jié)向量不等式:【注意】:同向或有;反向或有;不共線.(這些和實(shí)數(shù)集中類似)代數(shù)不等式:同號(hào)或有;異號(hào)或有.絕對(duì)值不等式:雙向不等式:(左邊當(dāng)時(shí)取得等號(hào),右邊當(dāng)時(shí)取得等號(hào).)放縮不等式:①,則.【說(shuō)明】:(,糖水的濃度問(wèn)題).【拓展】:.②,,則;③,;④,.
2025-06-23 17:20
【摘要】......雙基自測(cè)1.(人教A版教材習(xí)題改編)函數(shù)y=x+(x>0)的值域?yàn)? ).A.(-∞,-2]∪[2,+∞) B.(0,+∞)C.[2,+∞) D.(2,+∞)2.下列不等式:①a2+1>2a;②≤2;③
2025-06-23 02:15
【摘要】......《基本不等式》教學(xué)設(shè)計(jì)張中華教材:人教版《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(A版)》必修5課題:基本不等式(第一課時(shí))一、教材分析《基本不
【摘要】全方位教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:授課時(shí)間:2012年11月3日星期姓名性別女年
2025-04-17 13:03
【摘要】導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):,理解一元一次不等式組的解集的意義;;能借助數(shù)軸正確表示一元一次不等式組的解集;重點(diǎn)難點(diǎn)::一元一次不等式組的解法;:一元一次不等式組解集的確定。一、學(xué)前準(zhǔn)備1、解不等式:(1)2x—2x+1(2)x+11&l
2024-11-21 05:15
【摘要】第一篇:基本不等式的證明教案 課題:基本不等式的證明(1) 斜橋中學(xué)肖劍 一、教材分析 不等式是高中的重點(diǎn)也是難點(diǎn),而本節(jié)內(nèi)容又是該章的重中之重,是《考試說(shuō)明》中八個(gè)C級(jí)考點(diǎn)之一?;静坏仁降?..
2025-10-18 19:03
【摘要】第一篇:基本不等式教學(xué)反思200711 “基本不等式”教學(xué)反思 周開芹 根據(jù)新課標(biāo)的要求,本節(jié)的重點(diǎn)是應(yīng)用數(shù)形結(jié)合的思想理解基本不等式,并從不同角度探索基本不等式的證明過(guò)程,難點(diǎn)是用基本不等式求...
2025-10-16 17:23
【摘要】《不等式》復(fù)習(xí)小結(jié)(導(dǎo)學(xué)案)(集美中學(xué)楊正國(guó))一、學(xué)習(xí)目標(biāo).會(huì)用不等式(組)表示不等關(guān)系;.熟悉不等式的性質(zhì),能應(yīng)用不等式的性質(zhì)求解“范圍問(wèn)題”,會(huì)用作差法比較大??;.會(huì)解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函數(shù)的關(guān)系;.會(huì)作二元一次不等式(組)表示的平面區(qū)域,會(huì)解簡(jiǎn)單的線性規(guī)劃問(wèn)題;.明確均值不等式及其成立條件,會(huì)靈活應(yīng)用均值不等式證明或求解
2025-04-16 12:30
【摘要】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第四節(jié)基本不等式菜單課
2025-01-06 16:33
【摘要】基本不等式第2課時(shí)高一數(shù)學(xué)必修5第三章《不等式》利用求最值的要點(diǎn):,,2abababR????(1)最值存在的條件的:一正,二定
2025-08-16 01:28